124 research outputs found

    Evaluation of Magnetic Micro- and Nanoparticle Toxicity to Ocular Tissues

    Get PDF
    Purpose: Magnetic nanoparticles (MNPs) may be used for focal delivery of plasmids, drugs, cells, and other applications. Here we ask whether such particles are toxic to ocular structures. Methods: To evaluate the ocular toxicity of MNPs, we asked if either 50 nm or 4 mm magnetic particles affect intraocular pressure, corneal endothelial cell count, retinal morphology including both cell counts and glial activation, or photoreceptor function at different time points after injection. Sprague-Dawley rats (n = 44) were injected in the left eye with either 50 nm (3 ml, 1.65 mg) or 4 mm(3ml, 1.69 mg) magnetic particles, and an equal volume of PBS into the right eye. Electroretinograms (ERG) were used to determine if MNPs induce functional changes to the photoreceptor layers. Enucleated eyes were sectioned for histology and immunofluorescence. Results: Compared to control-injected eyes, MNPs did not alter IOP measurements. ERG amplitudes for a-waves were in the 100–250 mV range and b-waves were in the 500–600 mV range, with no significant differences between injected and noninjected eyes. Histological sectioning and immunofluorescence staining showed little difference in MNP-injected animals compared to control eyes. In contrast, at 1 week, corneal endothelial cell numbers were significantly lower in the 4 mm magnetic particle-injected eyes compared to either 50 nm MNP- or PBS-injected eyes. Furthermore, iron deposition was detected after 4 mm magnetic particle but not 50 nm MNP injection

    Contribution of Cystine-Glutamate Antiporters to the Psychotomimetic Effects of Phencyclidine

    Get PDF
    Altered glutamate signaling contributes to a myriad of neural disorders, including schizophrenia. While synaptic levels are intensely studied, nonvesicular release mechanisms, including cystine–glutamate exchange, maintain high steady-state glutamate levels in the extrasynaptic space. The existence of extrasynaptic receptors, including metabotropic group II glutamate receptors (mGluR), pose nonvesicular release mechanisms as unrecognized targets capable of contributing to pathological glutamate signaling. We tested the hypothesis that activation of cystine–glutamate antiporters using the cysteine prodrug N-acetylcysteine would blunt psychotomimetic effects in the rodent phencyclidine (PCP) model of schizophrenia. First, we demonstrate that PCP elevates extracellular glutamate in the prefrontal cortex, an effect that is blocked by N-acetylcysteine pretreatment. To determine the relevance of the above finding, we assessed social interaction and found that N-acetylcysteine reverses social withdrawal produced by repeated PCP. In a separate paradigm, acute PCP resulted in working memory deficits assessed using a discrete trial t-maze task, and this effect was also reversed by N-acetylcysteine pretreatment. The capacity of N-acetylcysteine to restore working memory was blocked by infusion of the cystine–glutamate antiporter inhibitor (S)-4-carboxyphenylglycine into the prefrontal cortex or systemic administration of the group II mGluR antagonist LY341495 indicating that the effects of N-acetylcysteine requires cystine–glutamate exchange and group II mGluR activation. Finally, protein levels from postmortem tissue obtained from schizophrenic patients revealed significant changes in the level of xCT, the active subunit for cystine–glutamate exchange, in the dorsolateral prefrontal cortex. These data advance cystine–glutamate antiporters as novel targets capable of reversing the psychotomimetic effects of PCP

    Theoretical analysis of the dose dependence of the oxygen enhancement ratio and its relevance for clinical applications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The increased resistance of hypoxic cells to ionizing radiation is usually believed to be the primary reason for treatment failure in tumors with oxygen-deficient areas. This oxygen effect can be expressed quantitatively by the oxygen enhancement ratio (OER). Here we investigate theoretically the dependence of the OER on the applied local dose for different types of ionizing irradiation and discuss its importance for clinical applications in radiotherapy for two scenarios: small dose variations during hypoxia-based dose painting and larger dose changes introduced by altered fractionation schemes.</p> <p>Methods</p> <p>Using the widespread Alper-Howard-Flanders and standard linear-quadratic (LQ) models, OER calculations are performed for T1 human kidney and V79 Chinese hamster cells for various dose levels and various hypoxic oxygen partial pressures (pO2) between 0.01 and 20 mmHg as present in clinical situations <it>in vivo</it>. Our work comprises the analysis for both low linear energy transfer (LET) treatment with photons or protons and high-LET treatment with heavy ions. A detailed analysis of experimental data from the literature with respect to the dose dependence of the oxygen effect is performed, revealing controversial opinions whether the OER increases, decreases or stays constant with dose.</p> <p>Results</p> <p>The behavior of the OER with dose per fraction depends primarily on the ratios of the LQ parameters alpha and beta under hypoxic and aerobic conditions, which themselves depend on LET, pO2 and the cell or tissue type. According to our calculations, the OER variations with dose <it>in vivo </it>for low-LET treatments are moderate, with changes in the OER up to 11% for dose painting (1 or 3 Gy per fraction compared to 2 Gy) and up to 22% in hyper-/hypofractionation (0.5 or 20 Gy per fraction compared to 2 Gy) for oxygen tensions between 0.2 and 20 mmHg typically measured clinically in hypoxic tumors. For extremely hypoxic cells (0.01 mmHg), the dose dependence of the OER becomes more pronounced (up to 36%). For high LET, OER variations up to 4% for the whole range of oxygen tensions between 0.01 and 20 mmHg were found, which were much smaller than for low LET.</p> <p>Conclusions</p> <p>The formalism presented in this paper can be used for various tissue and radiation types to estimate OER variations with dose and help to decide in clinical practice whether some dose changes in dose painting or in fractionation can bring more benefit in terms of the OER in the treatment of a specific hypoxic tumor.</p

    Antibacterial efficacy of Jackfruit rag extract against clinically important pathogens and validation of its antimicrobial activity in Shigella dysenteriae infected Drosophila melanogaster infection model

    Get PDF
    513-522Exploration of alternative sources of antibacterial compounds is an important and possibly an effective solution to the current challenges in antimicrobial therapy. Plant derived wastes may offer one such alternative. Here, we investigated the antibacterial property of extract derived from a part of the Jackfruit (Artocarpus heterophyllus Lam.) called ‘rag’, generally considered as fruit waste. Morpho-physical characterization of the Jackfruit rag extract (JFRE) was performed using Gas-chromatography, where peaks indicative of furfural; pentanoic acid; and hexadecanoic acid were observed. In vitro biocompatibility of JFRE was performed using the MTT assay, which showed comparable cellular viability between extract-treated and untreated mouse fibroblast cells. Agar well disc diffusion assay exhibited JFRE induced zones of inhibition for a wide variety of laboratory and clinical strains of Gram-positive and Gram-negative bacteria. Analysis of electron microscope images of bacterial cells suggests that JFRE induces cell death by disintegration of the bacterial cell wall and precipitating intracytoplasmic clumping. The antibacterial activity of the JFREs was further validated in vivo using Shigella dysenteriae infected fly model, where JFRE pre-fed flies infected with S. dysenteriae had significantly reduced mortality compared to controls. JFRE demonstrates broad antibacterial property, both in vitro and in vivo, possibly by its activity on bacterial cell wall

    A Review of the Implications of Heterozygosity and Inbreeding on Germplasm Biodiversity and Its Conservation in the Silkworm, Bombyx mori

    Get PDF
    Silkworm genebanks assume paramount importance as the reservoirs of biodiversity and source of alleles that can be easily retrieved for genetic enhancement of popular breeds. More than 4000 Bombyx mori L (Lepidoptera: Bombycidae) strains are currently available and these strains are maintained through continuous sibling mating. This repeated sibling mating makes the populations of each strain more homozygous, but leads to loss of unique and valuable genes through the process of inbreeding depression. Hence, it is essential to maintain a minimal degree of heterozygosity within the population of each silkworm strain, especially in the traditional geographic strains, to avoid such loss. As a result, accurate estimation of genetic diversity is becoming more important in silkworm genetic resources conservation. Application of molecular markers help estimate genetic diversity much more accurately than that of morphological traits. Since a minimal amount of heterozygosity in each silkworm strain is essential for better conservation by avoiding inbreeding depression, this article overviews both theoretical and practical importance of heterozygosity together with impacts of inbreeding depression and the merits and demerits of neutral molecular markers for measurements of both heterozygosity and inbreeding depression in the silkworm Bombyx mori

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Taking stock of 10 years of published research on the ASHA programme: Examining India’s national community health worker programme from a health systems perspective

    Get PDF
    Background: As India’s accredited social health activist (ASHA) community health worker (CHW) programme enters its second decade, we take stock of the research undertaken and whether it examines the health systems interfaces required to sustain the programme at scale. Methods: We systematically searched three databases for articles on ASHAs published between 2005 and 2016. Articles that met the inclusion criteria underwent analysis using an inductive CHW–health systems interface framework. Results: A total of 122 academic articles were identified (56 quantitative, 29 mixed methods, 28 qualitative, and 9 commentary or synthesis); 44 articles reported on special interventions and 78 on the routine ASHA program. Findings on special interventions were overwhelmingly positive, with few negative or mixed results. In contrast, 55% of articles on the routine ASHA programme showed mixed findings and 23% negative, with few indicating overall positive findings, reflecting broader system constraints. Over half the articles had a health system perspective, including almost all those on general ASHA work, but only a third of those with a health condition focus. The most extensively researched health systems topics were ASHA performance, training and capacity-building, with very little research done on programme financing and reporting, ASHA grievance redressal or peer communication. Research tended to be descriptive, with fewer influence, explanatory or exploratory articles, and no predictive or emancipatory studies. Indian institutions and authors led and partnered on most of the research, wrote all the critical commentaries, and published more studies with negative results. Conclusion: Published work on ASHAs highlights a range of small-scale innovations, but also showcases the challenges faced by a programme at massive scale, situated in the broader health system. As the programme continues to evolve, critical comparative research that constructively feeds back into programme reforms is needed, particularly related to governance, intersectoral linkages, ASHA solidarity, and community capacity to provide support and oversight

    Alcohol use and burden for 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    BACKGROUND: Alcohol use is a leading risk factor for death and disability, but its overall association with health remains complex given the possible protective effects of moderate alcohol consumption on some conditions. With our comprehensive approach to health accounting within the Global Burden of Diseases, Injuries, and Risk Factors Study 2016, we generated improved estimates of alcohol use and alcohol-attributable deaths and disability-adjusted life-years (DALYs) for 195 locations from 1990 to 2016, for both sexes and for 5-year age groups between the ages of 15 years and 95 years and older. METHODS: Using 694 data sources of individual and population-level alcohol consumption, along with 592 prospective and retrospective studies on the risk of alcohol use, we produced estimates of the prevalence of current drinking, abstention, the distribution of alcohol consumption among current drinkers in standard drinks daily (defined as 10 g of pure ethyl alcohol), and alcohol-attributable deaths and DALYs. We made several methodological improvements compared with previous estimates: first, we adjusted alcohol sales estimates to take into account tourist and unrecorded consumption; second, we did a new meta-analysis of relative risks for 23 health outcomes associated with alcohol use; and third, we developed a new method to quantify the level of alcohol consumption that minimises the overall risk to individual health. FINDINGS: Globally, alcohol use was the seventh leading risk factor for both deaths and DALYs in 2016, accounting for 2·2% (95% uncertainty interval [UI] 1·5–3·0) of age-standardised female deaths and 6·8% (5·8–8·0) of age-standardised male deaths. Among the population aged 15–49 years, alcohol use was the leading risk factor globally in 2016, with 3·8% (95% UI 3·2–4·3) of female deaths and 12·2% (10·8–13·6) of male deaths attributable to alcohol use. For the population aged 15–49 years, female attributable DALYs were 2·3% (95% UI 2·0–2·6) and male attributable DALYs were 8·9% (7·8–9·9). The three leading causes of attributable deaths in this age group were tuberculosis (1·4% [95% UI 1·0–1·7] of total deaths), road injuries (1·2% [0·7–1·9]), and self-harm (1·1% [0·6–1·5]). For populations aged 50 years and older, cancers accounted for a large proportion of total alcohol-attributable deaths in 2016, constituting 27·1% (95% UI 21·2–33·3) of total alcohol-attributable female deaths and 18·9% (15·3–22·6) of male deaths. The level of alcohol consumption that minimised harm across health outcomes was zero (95% UI 0·0–0·8) standard drinks per week. INTERPRETATION: Alcohol use is a leading risk factor for global disease burden and causes substantial health loss. We found that the risk of all-cause mortality, and of cancers specifically, rises with increasing levels of consumption, and the level of consumption that minimises health loss is zero. These results suggest that alcohol control policies might need to be revised worldwide, refocusing on efforts to lower overall population-level consumption. FUNDING: Bill & Melinda Gates Foundation
    corecore