311 research outputs found
Evolution of predator dispersal in relation to spatio-temporal prey dynamics : how not to get stuck in the wrong place!
Peer reviewedPublisher PD
Self-Organization, Layered Structure, and Aggregation Enhance Persistence of a Synthetic Biofilm Consortium
Microbial consortia constitute a majority of the earth’s biomass, but little is known about how these cooperating
communities persist despite competition among community members. Theory suggests that non-random spatial structures
contribute to the persistence of mixed communities; when particular structures form, they may provide associated
community members with a growth advantage over unassociated members. If true, this has implications for the rise and
persistence of multi-cellular organisms. However, this theory is difficult to study because we rarely observe initial instances
of non-random physical structure in natural populations. Using two engineered strains of Escherichia coli that constitute a
synthetic symbiotic microbial consortium, we fortuitously observed such spatial self-organization. This consortium forms a
biofilm and, after several days, adopts a defined layered structure that is associated with two unexpected, measurable
growth advantages. First, the consortium cannot successfully colonize a new, downstream environment until it selforganizes
in the initial environment; in other words, the structure enhances the ability of the consortium to survive
environmental disruptions. Second, when the layered structure forms in downstream environments the consortium
accumulates significantly more biomass than it did in the initial environment; in other words, the structure enhances the
global productivity of the consortium. We also observed that the layered structure only assembles in downstream
environments that are colonized by aggregates from a previous, structured community. These results demonstrate roles for
self-organization and aggregation in persistence of multi-cellular communities, and also illustrate a role for the techniques
of synthetic biology in elucidating fundamental biological principles
The counter and consultation room work explored in the Netherlands
Objective To determine the frequency and nature of conversations at the counter and of private consultations at three Dutch community pharmacies. Methods In a purposive and convenience sample of three Dutch community pharmacies two work categories were investigated: counter work and consultation room work with self-reporting tally. The study took 6 weeks: 2 weeks at each pharmacy. Main outcome measure The number of care related conversations and consultations emerging in the counter work and consultation room work. Results About 43% of all counter conversations consisted of the provision of pharmaceutical information and 72% of the consultations in the separate consultation room dealt with care related activities. However, only 18 consultations were held in this latter room: 0.4% of all reported conversations. Conclusion The proportion of care related work at the counter and in the consultation room did have significant substance. There are however serious possibilities to change pharmaceutical care for the better. It is suggested that standard procedures at the counter may help increasing care related work. The presence of a separate consultation room may increase the number of consultations held in private, when combined with raising patient awareness of its existence
Assessing the ecological impacts of invasive species based on their functional responses and abundances
Invasive species management requires allocation of limited resources towards the proactive mitigation of those species that could elicit the highest ecological impacts. However, we lack predictive capacity with respect to the identities and degree of ecological impacts of invasive species. Here, we combine the relative per capita effects and relative field abundances of invader as compared to native species into a new metric, “Relative Impact Potential” (RIP), and test whether this metric can reliably predict high impact invaders. This metric tests the impact of invaders relative to the baseline impacts of natives on the broader ecological community. We first derived the functional responses (i.e. per capita effects) of two ecologically damaging invasive fish species in Europe, the Ponto-Caspian round goby (Neogobius melanostomus) and Asian topmouth gudgeon (Pseudorasbora parva), and their native trophic analogues, the bullhead (Cottus gobio; also C. bairdi) and bitterling (Rhodeus amarus), towards several prey species. This establishes the existence and relative strengths of the predator-prey relationships. Then, we derived ecologically comparable field abundance estimates of the invader and native fish from surveys and literature. This establishes the multipliers for the above per capita effects. Despite both predators having known severe detrimental field impacts, their functional responses alone were of modest predictive power in this regard; however, incorporation of their abundances relative to natives into the RIP metric gave high predictive power. We present invader/native RIP biplots that provide an intuitive visualisation of comparisons among the invasive and native species, reflecting the known broad ecological impacts of the invaders. Thus, we provide a mechanistic understanding of invasive species impacts and a predictive tool for use by practitioners, for example, in risk assessments
New results on the existences of solutions of the Dirichlet problem with respect to the Schrödinger-prey operator and their applications
Modeling the clonal heterogeneity of stem cells
Recent experimental studies suggest that tissue stem cell pools are composed of functionally diverse clones. Metapopulation models in ecology concentrate on collections of populations and their role in stabilizing coexistence and maintaining selected genetic or epigenetic variation. Such models are characterized by expansion and extinction of spatially distributed populations. We develop a mathematical framework derived from the multispecies metapopulation model of Tilman et al (1994) to study the dynamics of heterogeneous stem cell metapopulations. In addition to normal stem cells, the model can be applied to cancer cell populations and their response to treatment. In our model disturbances may lead to expansion or contraction of cells with distinct properties, reflecting proliferation, apoptosis, and clonal competition. We first present closed-form expressions for the basic model which defines clonal dynamics in the presence of exogenous global disturbances. We then extend the model to include disturbances which are periodic and which may affect clones differently. Within the model framework, we propose a method to devise an optimal strategy of treatments to regulate expansion, contraction, or mutual maintenance of cells with specific properties
Coexistence of competing stage-structured populations
This paper analyzes the stability of a coexistence equilibrium point of a model for competition between two stage-structured populations. In this model, for each population, competition for resources may affect any one of the following population parameters: reproduction, juvenile survival, maturation rate, or adult survival. The results show that the competitive strength of a population is affected by (1) the ratio of the population parameter influenced by competition under no resource limitation (maximum compensatory capacity) over the same parameter under a resource limitation due to competition (equilibrium rate) and (2) the ratio of interspecific competition over intraspecific competition; this ratio was previously shown to depend on resource-use overlap. The former ratio, which we define as fitness, can be equalized by adjusting organisms' life history strategies, thereby promoting coexistence. We conclude that in addition to niche differentiation among populations, the life history strategies of organisms play an important role in coexistence
Clusters of ant colonies and robust criticality in a tropical agroecosystem
Although sometimes difficult to measure at large scales, spatial pattern is important in natural biological spaces as a determinant of key ecological properties such as species diversity, stability, resiliency and others(1-6). Here we demonstrate, at a large spatial scale, that a common species of tropical arboreal ant forms clusters of nests through a combination of local satellite colony formation and density- dependent control by natural enemies, mainly a parasitic fly. Cluster sizes fall off as a power law consistent with a so-called robust critical state(7). This endogenous cluster formation at a critical state is a unique example of an insect population forming a non- random pattern at a large spatial scale. Furthermore, because the species is a keystone of a larger network that contributes to the ecosystem function of pest control, this is an example of how spatial dynamics at a large scale can affect ecosystem service at a local level.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62598/1/nature06477.pd
Does the early frog catch the worm? Disentangling potential drivers of a parasite age–intensity relationship in tadpoles
The manner in which parasite intensity and aggregation varies with host age can provide insights into parasite dynamics and help identify potential means of controlling infections in humans and wildlife. A significant challenge is to distinguish among competing mechanistic hypotheses for the relationship between age and parasite intensity or aggregation. Because different mechanisms can generate similar relationships, testing among competing hypotheses can be difficult, particularly in wildlife hosts, and often requires a combination of experimental and model fitting approaches. We used field data, experiments, and model fitting to distinguish among ten plausible drivers of a curvilinear age–intensity relationship and increasing aggregation with host age for echinostome trematode infections of green frogs. We found little support for most of these proposed drivers but did find that the parsimonious explanation for the observed age–intensity relationship was seasonal exposure to echinostomes. The parsimonious explanation for the aggregated distribution of parasites in this host population was heterogeneity in exposure. A predictive model incorporating seasonal exposure indicated that tadpoles hatching early or late in the breeding season should have lower trematode burdens at metamorphosis, particularly with simulated warmer climates. Application of this multi-pronged approach (field surveys, lab experiments, and modeling) to additional parasite–host systems could lead to discovery of general patterns in the drivers of parasite age–intensity and age–distribution relationships
- …
