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Abstract
Host parasite models are similar to host parasitoid models except that the parasite
does not necessarily kill the host. Leslie/Gower model (Leslie and Gower in Biometrika
47(3/4):219-234, 1960) played a historical role in ecology. We consider the stability of
Misra and Mitra’s model (Misra and Mitra in Comput. Math. Appl. 52:525-538, 2006).
We study this system analytically and improve the results of Misra and Mitra (Comput.
Math. Appl. 52:525-538, 2006).
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1 Introduction
Interaction (predator-prey, host-parasite, host-parasitoid, mutualism, competition) mod-
els of two species in nature, say

xt+ = f (xt , yt),

yt+ = g(xt , yt),
(.)

in general describe the change in the populations (i) by assuming a model of growth for
both species in the absence of the other, and (ii) by describing the effect of their interaction
on each other. The simplest model is

xt+ = axt + bxtyt ,

yt+ = cyt + dxtyt .

For example, choosing a > , b < ,  < c < , d >  will give us a predator-prey model
where the growth or decline is exponential in the absence of the other species in both
cases (xt is the prey population). Choosing a, c >  and b,d >  gives rise to mutualism,
where both species get a boost from living together. The mass-action terms xtyt indicate
random encounters between the species with a significant outcome (eating or infecting
one another, etc.). One of the earliest realistic models of two-species interaction was de-
veloped by Nicholson and Bailey, who applied it to the parasitoid Encarsia formosa and
the host Trialeurodes vaporariorum. A parasitoid is a parasite that can live on its own as
an adult, which then lays eggs into a host, eventually causing its death. The general host-

© 2013 Ufuktepe and Kapçak; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/208304613?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.advancesindifferenceequations.com/content/2013/1/79
mailto:unal.ufuktepe@ieu.edu.tr
http://creativecommons.org/licenses/by/2.0


Ufuktepe and Kapçak Advances in Difference Equations 2013, 2013:79 Page 2 of 7
http://www.advancesindifferenceequations.com/content/2013/1/79

parasitoid model is

Ht+ = rHtf (Ht ,Pt),

Pt+ = eHt
(
 – f (Ht ,Pt)

)
,

(.)

where f (Ht ,Pt) is the fraction of host population that is not parasitized at time t, r is the
fecundity of the host, and e is that of the parasite, that is, the average number of successful
eggs laid per individual. Note that the parasitoids die in the absence of the host, and for this
reason, they have been successfully used for eradicating insect pests. In the Nicholson-
Bailey model, the function f is determined, under the assumptions of the mass-action
principle and Poisson distribution of the number of encounters, to be f (Ht ,Pt) = e–cPt (the
positive constant c is called the ‘searching efficiency’ of the parasitoid).
Cooperation between the two populations is reflected by the fact that the transition

function for each population is an increasing function of the other population size. There
are several papers on the two-dimensional systems of difference equations with rational
nonlinearities. Most of these papers are models for either competition, as in [–], or co-
operation, as in [–]. Consider the following system of difference equations with param-
eters A,B >  and initial values x, y ≥ .

xn+ =
Axnyn
 + yn

,

yn+ =
Bynxn
 + xn

.
(.)

This system represents the rule by which two discrete, cooperating populations reproduce
from one generation to the next. The phase variables xn and yn denote population sizes
during the nth generation and the sequence or orbit {(xn, yn) : n = , , , . . .} depicts how
the populations evolve over time [].
In Hassell’s model [], the growth factor is of the form

F(Ht) =
R

( + aHt)b
,

where a,b > . This is the population model we will assume for our host species. Hassell
et al. [] collected R and b values for about two dozen species from field and laboratory
observations and noted that the majority of these cases were within the stable region.
In this paper we study the following host-parasite model, which was studied by Misra

and Mitra [], where the growing host is infected with the parasite:

Ht+ =
RHt

( +Ht)b
e–cPt ,

Pt+ =Ht
(
 – e–cPt

)
.

(.)

Note that such simplifications, including the convention a =  in the Hassell model, lead
to the interpretation of the ‘population’ variable as a ‘suitable multiple of the population’.
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2 Fixed points of the system (1.4)
In order to find the fixed points (H*,P*) of the system (.), we set Ht = Ht+ = H* and
Pt = Pt+ = P*:

H* =
RH*

( +H*)b
e–cP

*
,

P* =H*( – e–cP
*)
.

(.)

We first observe that for H* = , we have the extinction fixed point (, ) for any values
of parameters. For H* �=  and P* = , we obtain the solution (R


b – , ). For H* �=  and

P* �= , from the first equation in (.), we have

P* =

c
ln

[
R

( +H*)b

]
. (.)

Now, we can see that the parameter R is important for the existence of the fixed points
other than the extinction fixed point (, ). We have the following cases.
Case : R≤ .
For this case, we have R


b –  ≤  and 

c ln[
R

(+H*)b ] < . Hence, there is no exclusion and
coexistence fixed point for R < .
Case : R > .
By using the first equation in (.), assuming that H* �= , we have

e–cP
*
=
( +H*)b

R
. (.)

Combining equation (.) and the second equation in (.), we obtain

P* =H*
(
 –

( +H*)b

R

)
.

Now, we can write the first equation in (.) as

H* =
RH*

( +H*)b
e–cH

*(– (+H*)b
R )

or

(
 +H*)becH*– c

RH
*(+H*)b = R, (.)

an equation in the variable H*. Let us denote

z = F(x) = ( + x)becx–
c
R x(+x)

b
.

When the graph of F intersects the horizontal line z = R, some fixed points are obtained.
Note that x = R


b –  is a solution of the equation F(x) = R, which corresponds to the fixed

point (R

b – , ) of the system (.). We investigate if there exist some other intersection

points.
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Figure 1 The intersection point is the point where F′(x) = 0.

Figure 2 z = F(x), z = Rwhere b = 2, c = 0.6, R = 1.4.

Setting F ′(x) = , we obtain the equation

R(b + c + cx)
c( + x + bx)

= ( + x)b.

For x > , the function on the right-hand side has y-intercept  and is monotonically
increasing without bound. On the other hand, the function on the left-hand side is mono-
tonically decreasing, has y-intercept R( + b/c) > , and converges to R/( + b) as x → ∞.
Thus, there is a unique intersection point which means there exists only one critical point
(see Figure ).
Since F() = , F ′() = c(R–)+bR

R > , F(x) →  as x → ∞, the critical point is a local
maximum. See Figure .
In Figure , we know that one of the intersection points is the solution x = R


b – . The

other intersection point, say H̄ , may or may not be a component of a positive fixed point.
In order to guarantee that the P component, say P̄, is also positive, we solve P* >  in
equation (.) and find

H* < R

b – .
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Thus, there exists a positive fixed point only if the H component of it must be less than
the number R


b – , which means among the two intersection points, the one on the right

must be R

b –  and hence F ′(R


b – ) < . Solving this inequality, we obtain the condition

for the existence of the positive fixed point: R > ( + 
c )

b.
Thus, we obtain the following result.

Theorem . For the system (.), the following statements hold true.
a. If R≤ , then the only fixed point is the extinction fixed point (, ).
b. If

 < R ≤
(
 +


c

)b

,

then there exist two fixed points: the extinction fixed point (, ) and the exclusion
fixed point (R


b – , ).

c. If

R >
(
 +


c

)b

,

then there exist three fixed points: extinction fixed point (, ), exclusion fixed point
(R


b – , ), and a coexistence fixed point.

3 Stability analysis of the system (1.4)
In this section, the stability of the fixed points is examined.
The Jacobian matrix of the system (.) is

J =

(
R( +H – bH)( +H)––be–cP –cRH( +H)–be–cP

 – e–cP cHe–cP

)
.

At (, ), the Jacobian becomes

J =

(
R 
 

)
.

The eigenvalues for the fixed point (, ) are λ = R and λ = . Hence, (, ) is asymptot-
ically stable if R < . We now consider the exclusion fixed point.

Theorem . For the system (.), the exclusion fixed point (R

b – , ) is asymptotically

stable if

max

(
c

c + 
,
b – 
b

)
< R– 

b < .

Proof The Jacobian matrix evaluated at this point is given by

J =

(
 + b(– + R– 

b ) –c(– + R

b )

 c(– + R

b ),

)
,

where the eigenvalues are λ =  + b(– + R– 
b ) and λ = c(– + R


b ). Applying the stability

conditions |λ| <  and |λ| < , we obtain the desired result. �
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Note that the condition |λ| <  yields R < ( + 
c )

b, for which there does not exist any co-
existence fixed point. When the coexistence fixed point appears, the exclusion fixed point
loses stability.We confirmour result by visual representation of the system for some values
of parameters: Taking b = ., c = ., R = ., for which the condition in Theorem . is
satisfied, the exclusion fixed point is locally asymptotically stable (see Figure ). However,
taking c = . and leaving the other parameters as they are, the coexistence fixed point
appears and the exclusion fixed point loses stability (see Figure ).

Figure 3 Phase portrait of the system (1.4) where b = 1.15, c = 2.2, R = 1.5.

Figure 4 Phase portrait of the system (1.4) where b = 1.15, c = 3.2, R = 1.5.
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