1,786 research outputs found

    A new 2-D model of a thin annular disk using a modified assumption

    No full text
    The work describes an improved 2-D model for a thin annulus by using a modified assumption with regard to coupled vibration. With this approach, the impedance spectrum and displacements due to radial modes, both in radial and thickness direction of a thin ring, are obtained. Bending displacement is investigated by finite element analysis (FEA) and matches our model. The bending in the thickness direction is coupled to radial modes and shows several node circles in the high radial overtone frequency range. The model is validated by FEA with excellent agreement between the new theory and FEA result

    Electromagnetic vibration energy harvesting using an improved Halbach array

    No full text
    This paper reports an electromagnetic vibration energy harvester using an improved Halbach array. A Halbach array is a specific arrangement of permanent magnets that concentrates the magnetic field on one side of the array while cancelling the field on the other side to almost zero. Previous research showed that although the Halbach array has higher magnetic field density compared to normal magnet layouts, its magnetic flux gradient is not as high. Thus, output powers of energy harvesters with Halbach arrays were found to be less than those with normal magnet layouts. This paper proposes an improved Halbach array that achieves both high magnetic field strength and magnetic flux gradient. Test results showed that the improved Halbach array can increase the output power of energy harvesters by a factor of seven compared to the previous Halbach design and by a factor of 1.5 compared to the normal configuration

    New Detections of Optical Emission from Kiloparsec-scale Quasar Jets

    Get PDF
    We report initial results from the detection of optical emission in the arcsecond-scale radio jets of two quasars utilizing images from the {\it Hubble Space Telescope} archive. The optical emission has a very knotty appearance and is consistent with synchrotron emission from highly relativistic electrons in the jet. Combining these observations with those of previously reported features in other quasars, an emerging trend appears to be that their radio-to-optical spectral indices are steeper than those of similar features in jets of lower power radio sources.Comment: 4 pgs, 2 figs, Proc of The Physics of Relativistic Jets in the Chandra and XMM Era workshop, eds. G. Brunetti, D.E. Harris, R.M. Sambruna, and G. Setti, submitted to New Astronomy Review. Quality of figure 1 degraded to fit into preprint server. Includes elsart.cls fil

    PROMPT RADIATION EFFECTS ON CABLES AND LINEAR POWER INSTRUMENTATION CHANNELS

    Full text link
    Tests were conducted to determine the amount of error introduced in reactor power data by radiation-induced voltages in cables and electrometer preamplifier chassis. The results, obtained near the central exposure facility of the KEWB (Reacter Safety Experiments), showed no observable radiation effects under the conditions of present use. Cable insulation resistance was measured during the radiation bursts. (C.J.G.

    Mitochondrial function and oxygen supply in normal and in chronically ischemic muscle: A combined 31P magnetic resonance spectroscopy and near infrared spectroscopy study in vivo

    Get PDF
    AbstractPurpose: We used 31P magnetic resonance spectroscopy (MRS) and near-infrared spectroscopy (NIRS) as a means of quantifying abnormalities in calf muscle oxygenation and adenosine triphosphate (ATP) turnover in peripheral vascular disease (PVD). Methods: Eleven male patients with PVD (mean age, 65 years; range, 55-76 years) and nine male control subjects of similar age were observed in a case-control study in vascular outpatients. Inclusion criteria were more than 6 months' calf claudication (median, 1.5 years; range, 0.6-18 years); proven femoropopliteal or iliofemoral occlusive or stenotic disease; maximum treadmill walking distance (2 km/h, 10° gradient) of 50 to 230 m (mean, 112 m); ankle-brachial pressure index of 0.8 or less during exercise (mean, 0.47; range, 0.29-0.60). Exclusion criteria included diabetes mellitus, anemia, and magnet contraindications. Simultaneous 31P MRS and NIRS of lateral gastrocnemius was conducted during 2 to 4 minutes of voluntary 0.5 Hz isometric plantarflexion at 50% and 75% maximum voluntary contraction force (MVC), followed by 5 minutes recovery. Each subject was studied three times, and the results were combined. Results: Compared with control subjects, patients with PVD showed (1) normal muscle cross-sectional area, MVC, ATP turnover, and contractile efficiency (ATP turnover per force/area); (2) larger phosphocreatine (PCr) changes during exercise (ie, increased shortfall of oxidative ATP synthesis) and slower PCr recovery (47% ± 7% [mean ± SEM] decrease in functional capacity for oxidative ATP synthesis, P =.001); (3) faster deoxygenation during exercise and slower postexercise reoxygenation (59% ± 7% decrease in rate constant, P =.0009), despite reduced oxidative ATP synthesis; (4) correlation between PCr and NIRS recovery rate constants (P <.02); and (5) correlations between smaller walking distance, slower PCr recovery, and reduced MVC (P <.001). The precision of the key measurements (rate constants and contractile efficiency) was 12% to 18% interstudy and 30% to 40% intersubject. Conclusion: The primary lesion in oxygen supply dominates muscle metabolism. Reduced force-generation in patients who are affected more may protect muscle from metabolic stress. (J Vasc Surg 2001;34:1103-10.

    Generation of entangled states and error protection from adiabatic avoided level crossings

    Get PDF
    We consider the environment-affected dynamics of NN self-interacting particles living in one-dimensional double wells. Two topics are dealt with. First, we consider the production of entangled states of two-level systems. We show that by adiabatically varying the well biases we may dynamically generate maximally entangled states, starting from initially unentangled product states. Entanglement degradation due to a common type of environmental influence is then computed by solving a master equation. However, we also demonstrate that entanglement production is unaffected if the system-environment coupling is of the type that induces ``motional narrowing''. As our second but related topic, we construct a different master equation that seamlessly merges error protection/detection dynamics for quantum information with the environmental couplings responsible for producing the errors in the first place. Adiabatic avoided crossing schemes are used in both topics.Comment: 14 pages, 6 figures. Minor changes. To appear in Phys. Rev.
    corecore