1,037 research outputs found
Youth-focused citizen science: Examining the role of environmental science learning and agency for conservation
AbstractCitizen science by youth is rapidly expanding, but very little research has addressed the ways programs meet the dual goals of rigorous conservation science and environmental science education. We examined case studies of youth-focused community and citizen science (CCS) and analyzed the learning processes and outcomes, and stewardship activities for youth, as well as contributions to site and species management, each as conservation outcomes. Examining two programs (one coastal and one water quality monitoring) across multiple sites in the San Francisco Bay Area, CA, in- and out-of-school settings, we qualitatively analyzed in-depth observations and pre- and post-program interviews with youth and educators. First, we examined evidence from the programs' impacts on conservation in the form of contribution to site and species management. We found that youth work informed regional resource management and local habitat improvement. Second, we examined the youth participants' environmental science agency (ESA). ESA combines not only understanding of environmental science and inquiry practices, but also the youths' identification with those practices and their developing belief that the ecosystem is something on which they act. We found that youth developed different aspects of environmental science agency in each context. We identify three key CCS processes through which many of the youth developed ESA: ensuring rigorous data collection, disseminating scientific findings to authentic external audiences, and investigating complex social-ecological systems. Our findings suggest that when CCS programs for youth support these processes, they can foster youth participation in current conservation actions, and build their capacity for future conservation actions
Interacting Random Walkers and Non-Equilibrium Fluctuations
We introduce a model of interacting Random Walk, whose hopping amplitude
depends on the number of walkers/particles on the link. The mesoscopic
counterpart of such a microscopic dynamics is a diffusing system whose
diffusivity depends on the particle density. A non-equilibrium stationary flux
can be induced by suitable boundary conditions, and we show indeed that it is
mesoscopically described by a Fourier equation with a density dependent
diffusivity. A simple mean-field description predicts a critical diffusivity if
the hopping amplitude vanishes for a certain walker density. Actually, we
evidence that, even if the density equals this pseudo-critical value, the
system does not present any criticality but only a dynamical slowing down. This
property is confirmed by the fact that, in spite of interaction, the particle
distribution at equilibrium is simply described in terms of a product of
Poissonians. For mesoscopic systems with a stationary flux, a very effect of
interaction among particles consists in the amplification of fluctuations,
which is especially relevant close to the pseudo-critical density. This agrees
with analogous results obtained for Ising models, clarifying that larger
fluctuations are induced by the dynamical slowing down and not by a genuine
criticality. The consistency of this amplification effect with altered coloured
noise in time series is also proved.Comment: 8 pages, 7 figure
Spin-Peierls phases in pyrochlore antiferromagnets
In the highly frustrated pyrochlore magnet spins form a lattice of corner
sharing tetrahedra. We show that the tetrahedral ``molecule'' at the heart of
this structure undergoes a Jahn-Teller distortion when lattice motion is
coupled to the antiferromagnetism. We extend this analysis to the full
pyrochlore lattice by means of Landau theory and argue that it should exhibit
spin-Peierls phases with bond order but no spin order. We find a range of Neel
phases, with collinear, coplanar and noncoplanar order. While collinear Neel
phases are easiest to generate microscopically, we also exhibit an interaction
that gives rise to a coplanar state instead.Comment: REVTeX 4, 14 pages, 12 figures (best viewed in color
The Planetary Nebula Luminosity Function at the Dawn of Gaia
The [O III] 5007 Planetary Nebula Luminosity Function (PNLF) is an excellent
extragalactic standard candle. In theory, the PNLF method should not work at
all, since the luminosities of the brightest planetary nebulae (PNe) should be
highly sensitive to the age of their host stellar population. Yet the method
appears robust, as it consistently produces < 10% distances to galaxies of all
Hubble types, from the earliest ellipticals to the latest-type spirals and
irregulars. It is therefore uniquely suited for cross-checking the results of
other techniques and finding small offsets between the Population I and
Population II distance ladders. We review the calibration of the method and
show that the zero points provided by Cepheids and the Tip of the Red Giant
Branch are in excellent agreement. We then compare the results of the PNLF with
those from Surface Brightness Fluctuation measurements, and show that, although
both techniques agree in a relative sense, the latter method yields distances
that are ~15% larger than those from the PNLF. We trace this discrepancy back
to the calibration galaxies and argue that, due to a small systematic error
associated with internal reddening, the true distance scale likely falls
between the extremes of the two methods. We also demonstrate how PNLF
measurements in the early-type galaxies that have hosted Type Ia supernovae can
help calibrate the SN Ia maximum magnitude-rate of decline relation. Finally,
we discuss how the results from space missions such as Kepler and Gaia can help
our understanding of the PNLF phenomenon and improve our knowledge of the
physics of local planetary nebulae.Comment: 12 pages, invited review at the conference "The Fundamental Cosmic
Distance Scale: State of the Art and Gaia Perspective", to appear in
Astrophysics and Space Scienc
Self-Organized Branching Processes: A Mean-Field Theory for Avalanches
We discuss mean-field theories for self-organized criticality and the
connection with the general theory of branching processes. We point out that
the nature of the self-organization is not addressed properly by the previously
proposed mean-field theories. We introduce a new mean-field model that
explicitly takes the boundary conditions into account; in this way, the local
dynamical rules are coupled to a global equation that drives the control
parameter to its critical value. We study the model numerically, and
analytically we compute the avalanche distributions.Comment: 4 pages + 4 ps figure
Recommended from our members
Lessons Learned in Risk Management on NCSX
The National Compact Stellarator Experiment (NCSX) was designed to test physics principles of an innovative stellarator design developed by the Princeton Plasma Physics Laboratory and Oak Ridge National Laboratory. Construction of some of the major components and sub-assemblies was completed, but the estimated cost and schedule for completing the project grew as the technical requirements and risks became better understood, leading to its cancellation in 2008. The project's risks stemmed from its technical challenges, primarily the complex component geometries and tight tolerances that were required. The initial baseline, established in 2004, was supported by a risk management plan and risk-based contingencies, both of which proved to be inadequate. Technical successes were achieved in the construction of challenging components and subassemblies, but cost and schedule growth was experienced. As part of an effort to improve project performance, a new risk management program was devised and implemented in 2007-08. It led to a better understanding of project risks, a sounder basis for contingency estimates, and improved management tools. Although the risks ultimately were unacceptable to the sponsor, valuable lessons in risk management were learned through the experiences with the NCSX project
Bond order from disorder in the planar pyrochlore magnet
We study magnetic order in the Heisenberg antiferromagnet on the checkerboard
lattice, a two-dimensional version of the pyrochlore network with strong
geometric frustration. By employing the semiclassical (1/S) expansion we find
that quantum fluctuations of spins induce a long-range order that breaks the
four-fold rotational symmetry of the lattice. The ordered phase is a
valence-bond crystal. We discuss similarities and differences with the extreme
quantum case S = 1/2 and find a useful phenomenology to describe the
bond-ordered phases.Comment: Minor clarifications + reference to an informal introduction
cond-mat/030809
VERITAS: the Very Energetic Radiation Imaging Telescope Array System
The Very Energetic Radiation Imaging Telescope Array System (VERITAS)
represents an important step forward in the study of extreme astrophysical
processes in the universe. It combines the power of the atmospheric Cherenkov
imaging technique using a large optical reflector with the power of
stereoscopic observatories using arrays of separated telescopes looking at the
same shower. The seven identical telescopes in VERITAS, each of aperture 10 m,
will be deployed in a filled hexagonal pattern of side 80 m; each telescope
will have a camera consisting of 499 pixels with a field of view of 3.5 deg
VERITAS will substantially increase the catalog of very high energy (E >
100GeV) gamma-ray sources and greatly improve measurements of established
sources.Comment: 44 pages, 16 figure
Terrestrial and Freshwater Ecosystems and Their Services (Chapter 2)
Chapter 2, building on prior assessments1, provides a global assessment of the observed impacts and projected risks of climate change to terrestrial and freshwater ecosystems, including their component species and the services they provide to people. Where possible, differences among regions, taxonomic groups and ecosystem types are presented. Adaptation options to reduce risks to ecosystems and people are assessed
- …