
VOLUME 75, NUMBER 22 PHYSICAL REVIEW LETTERS 27 NovEMBER 1995

Self-Organized Branching Processes: Mean-Field Theory for Avalanches
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We discuss mean-field theories for self-organized criticality and the connection with the general
theory of branching processes. We point out that the nature of the self-organization is not addressed
properly by the previously proposed mean-field theories. We introduce a new mean-field model that
explicitly takes the boundary conditions into account; in this way, the local dynamical rules are coupled
to a global equation that drives the control parameter to its critical value. We study the model
numerically, and analytically we compute the avalanche distributions.
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Many phenomena of interest to physicists, chemists, ge-
ologists, and biologists display long-range spatiotemporal
correlations. The critical behavior is sometimes appar-
ently "spontaneous, " in contrast to typical second order
phase transitions, where scaling occurs only when a pa-
rameter is tuned close to a critical value. The concept of
self-organized criticality (SOC) [1] was introduced to de-
scribe such systems which spontaneously organize into a
critical scale.

The SOC behavior has been investigated using different
models. Among those the most widely studied, numeri-
cally [1—3] and analytically [4,5], are the sandpile models.
An important feature of such systems is that they respond
to external perturbations by avalanches of all sizes s, with
a power-law distribution D(s) —s ', where r is a scal-
ing exponent.

The simplest theoretical approach to SOC is mean-field
theory [6], which allows for a qualitative description of
the behavior of the system. Mean-field exponents for
SOC models have been obtained by various approaches
[6—9], but it turns out that their values (e.g. , r = 3/2)
are the same for all the models considered thus far.
This fact can easily be understood since the spreading
of an avalanche in mean-field theory can be described
by a front consisting of noninteracting particles that can
either trigger subsequent activity or die out. This kind of
process is well known, and is called a branching process
[10]. The connection between branching processes and
SOC has been investigated, and it has been proposed
that the mean-field behavior of sandpile models can be
described by a critical branching process [11—13].

We begin by noting the following paradox inherent in
the previous mean-field studies: For a branching process
to be critical one must fine-tune a control parameter
to a critical value. This, by definition, cannot be the
case for a SOC system, where the critical state is
approached dynamically without the need to fine-tune
any parameter. In the present Letter, we resolve this
paradox by introducing a new mean-field model, the self-
organized branching process (SOBP). The coupling of
the local dynamical rules to a global condition drives the

system into a state that is indeed described by a critical
branching process. We study the model numerically and
compare the results of the simulations with analytical
results. We introduce the SOBP model based on physical
considerations, and then show that the mean-field theory
of SOC models can be exactly mapped to the SOBP
model.

Sandpile models are cellular automata defined on a
d-dimensional lattice. An integer variable, which we call
energy, is associated with each site of the lattice. Over
time, energy is added in integer units to a randomly
chosen site in the system. Whenever the energy on a site
reaches a critical value, the site "relaxes" and its energy
is transferred to the neighbors according to the specific
rules of the model. In this way, a single relaxation can
trigger other relaxations, leading to the formation of an
avalanche. With closed boundary conditions, the density
of critical sites in the system will increase as a function
of time such that eventually an avalanche of infinite
lifetime will form. Therefore, in order for the system to
be able to reach a SOC state, it is essential to impose
open boundary conditions such that energy can leave the
system, thus decreasing the number of critical sites. As
a result, regardless of the initial conditions, the system
is driven to a stationary SOC state characterized by a
balance between input and output, i.e., on average the
energy added to the system is equal to the energy that
leaves the system through the boundaries.

In the mean-field description of the sandpile model
(d ~ ~) one neglects correlations, which implies that
avalanches do not form loops and hence spread as a
branching process. In the SOBP model, an avalanche
starts with a single active site, which then relaxes with
probability p, leading to two new active sites. With
probability 1 —p the initial site does not relax and the
avalanche stops. If the avalanche does not stop, we repeat
the procedure for the new active sites until no active sites
remain. The parameter p is the probability that a site
relaxes when it is triggered by an external input. For
the SOBP branching process, there is a critical value,

p, = 1/2, such that for p ) p, the probability to have
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an infinite avalanche is nonzero, while for p ( p, all
avalanches are finite. Thus, p = p, corresponds to the
critical case, where avalanches are power law distributed.

In the above description, however, the boundary con-
ditions are not taken into account —even though they are
crucial for the self-organization process. %'e can intro-
duce boundary conditions in the problem in a natural
way, by allowing for no more than n generations for each
avalanche. Schematically, we can view the evolution of
a single avalanche of size s as taking place on a tree of
size N = 2"+' —1 (see Fig. 1). If the avalanche reaches
the boundary of the tree, we count the number of active
sites cr„(which in the sandpile language corresponds to
the energy leaving the system), and we expect that p de-
creases for the next avalanche. If, on the other hand, the
avalanche stops before reaching the boundary, then p will
slightly increase. Note that we are not studying the model
on a Bethe lattice, i.e., the branching structure we are dis-
cussing is not directly related to the geometry of the sys-
tem. The number of generations n can, nevertheless, be
thought of as some measure of the linear dimension of the
system.

The scenario discussed above is described by the
following dynamical equation for p(t):

p(t + 1) = p(t) + 1 —o.„(p, t)
N

Here o„, the size of an avalanche reaching the boundary,
fIuctuates in time and hence acts as a stochastic driving
force. If cr„= 0, then p increases (because some energy
has been put into the system without any output), whereas
if o., ) 0 then p decreases (due to energy leaving the
system). Equation (1) describes the global dynamics of
the SOBP, as opposed to the local dynamics which is
given by the branching process. We can study the model
for a fixed value of n, and then take the limit n ~

In this way, we perform the long-time limit before
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FIG. 1. Schematic drawing of an avalanche in a system with
a maximum of n = 3 avalanche generations corresponding
to X = 2 +' —1 = 15 sites. Each black site relaxes with
probability p to two new black sites and with probability 1 —p
to two white sites. The black sites are part of an avalanche
of size s = 7, whereas the active sites at the boundary yield
(T3(p, t) = 2. Note that s in the SOBP model must he an odd
integer while o, will be even.

the "thermodynamic" limit, which corresponds exactly to
what is done in sandpile simulations.

The SOBP model can be exactly mapped to SOC models
in the limit d oo, i.e., it provides a mean-field theory of
self-organized critical systems. To show this, we consider
for simplicity the two-state sandpile model [14]: When
a particle is added to a site g;, the site will relax if
g; = 1. In the limit d ~ oo, the avalanche will never
visit the same site more than once. Accordingly, each
site in the avalanche will relax with the same probability
p = P(z = 1). Eventually, the avalanche will stop, and
cr ~ 0 particles will leave the system. Thus, the total
number of particles M(t) evolves according to

M(t + 1) = M(t) + 1 —o. . (2)

Here p~ =—p, —a/N, A~ = b/N, with a = 0.69 ~
0.02 and b = 0.26 ~ 0.01. In the limit N ~ ~ the
distribution P(p) therefore approaches a delta function,
~(p —p. ).

The dynamical equation (1) for the SOBP model is recov-
ered by noting that M(t) = NP{z = 1) = Np For other.
SOC systems, mean-field descriptions similar to the SOBP
model can be derived.

Before investigating the SOBP model analytically, we
present some preliminary considerations together with nu-
merical results. For a fixed value of p, the average
value of cr„ is (a.„(p, t)) = (2p)" [10]. We can write
o.„(p, t) = (2p)" + rj(p, t), where the "noise" g de-
scribes the fluctuations around the average. Inserting this
expression in Eq. (1) and taking the continuum time limit,
we obtain

dp 1 —{2p)" q(p, t)
dt N N

Without the last term, Eq. (3) has a fixed point (dp/dt =
0) for p = p, = 1/2. On linearizing Eq. (3), we see that
the fixed point is attractive, which demonstrates the self-
organization of the SOBP model since the noise g/N
will have a vanishingly small effect in the thermody-
namic limit. To confirm our statement, we have studied
the SOBP model by carrying out simulations for differ-
ent system sizes, and averaging over typically 5 X 10
realization s.

In Fig. 2 we show the value of p as a function of time.
Independent of the initial conditions, we find that after a
transient p(t) reaches the self-organized state described
by the critical value p, = 1/2 and Iluctuates around it
with short-range correlations (of the order of one time
unit). By computing the variance of p(t), we find that
the fluctuations around the critical value decrease with the
system size as 1/N. Moreover, by analyzing the higher
moments, we find that the fluctuations for N » 1 can be
very well described by a Gaussian distribution,

(p —p~)'&
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FIG. 2. The value of p as a function of time for a system
with n = 10 generations. The two curves refer to two different
initial conditions, above p, (0) and below p, (0). After a
transient, the control parameter p(t) reaches its critical value
p, and fluctuates around it with short-range correlations.

In Fig. 3 we show the avalanche size distribution D(s)
for different values of the number of generations n. We
observe a scaling region [D(s) —s ' with r = 3/2),
whose size increases with n, and an exponential cutoff.
The power-law scaling is a signature of the mean-field
criticality of the SOBP model. In Fig. 4 we report
the distribution of active sites at the boundary, D(o), .
for different values of the number of generations. This
distribution falls off exponentially.

We now present some analytical results in the limit
where n » 1. First, we discuss the branching process
for any value of p, and show how this for the critical
branching process with p = p, yields the mean-field
exponent r = 3/2. In addition, we can obtain results for
finite, but large, values of n. Next, we obtain results for

the SOBP model which, as shown in Fig. 2, self-organizes
into a critical state where p = p, .

We introduce the probabilities P„(s,p) and Q„(o., p)
of having an avalanche of size s and boundary size cr in a
system with n generations. The corresponding generating
functions are defined by [10j

f„(x,p) —= QP„(s,p)x', (5a)

g„(x, p) =—QQ„(o-, p)x . (5b)

Because of the hierarchical structure of the branching
process, it is possible to write down recursion relations
for P„(s,p) and Q„(tr, p), from which we obtain [10j

f.+t(x. p) = xHI —p) + pf.'(x, p)i, (6a)

g +t(x, p) = (1 —p) + pg, (x, p), (6b)

where fo(x, p) = go(x, p) = x.
Next, we calculate the avalanche distribution D(s)

determined by P„(s,p) by using the recursion relation
(6a). The solution of Eq. (6a) in the limit n » 1 is given
by

1 —Ql —4xz p (1 —p)f(x, p) =
2xp

By expanding Eq. (7) as a series in x, and comparing
with the definition (5a), we obtain for sizes such that
1 «s ( n [15]

(7)

P.(,p) =,/, p[—/ .(p)]. (g)
$2(1 —p)/rr p

The cutoff s, (p) is given by s, (p) = —2/ln4p(l —p).
As p ~ 1/2, s, (p) ~ ~, thus showing explicitly that the
critical value for the branching process is p, = 1/2, and
that the mean-field exponent for the critical branching
process is r = 3/2.
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FIG. 3. Log-log plot of the avalanche distribution D(s) for
different system sizes. The number of generations n increases
from left to right. A line with slope r = 3/2 is plotted
for reference, and it describes the behavior of the data for
intermediate s values, cf. Eq. (11). For large s, the distributions
fall off exponentially.

FIG. 4. Semilogarithmic plot of the boundary avalanche dis-
tribution D(o)for different system .sizes [19]. For large o., the
distributions fall off exponentially. The solid lines are our ana-
lytical results of Eq. (13) for n && 1. We note that the agree-
ment improves with increasing n.
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P.(, p) = A(p) exp'- /"(p)], (9)

with functions A(p) and sp(p) which cannot be deter-
mined analytically. Nevertheless, we see that for any p
the probabilities P„(s, p) will decay exponentially.

The final step is to calculate the avalanche distribution
D(s) for the SOBP model. This can be calculated as the
average value of P„(s,p) with respect to the probability
density P(p), i.e. , according to the formula

1

D(s) = dp 4(p)P. (s, p) (10)

The expression (8) is valid only for avalanches which
do not feel the finite size of the system. For avalanches
with n ~ s ~ N, it is possible to solve the recursion
relation (6a), and then obtain P„(s,p) for p ~ p, by the
use of a Tauberian theorem [16—18]. By carrying out
such an analysis, we obtain after some algebra

models. Previous investigations have focused on the
critical branching process as the mean-held description
of sandpile systems. In the SOBP model, however,
by explicitly incorporating the boundary conditions, we
were able to show, using Eq. (3), how the dynamics
drives the system into a stationary state, which in the
thermodynamic limit corresponds to the critical branching
process. We have calculated the avalanche distributions
analytically, and found the mean-field result ~ = 3/2, in

good agreement with our simulation results.
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The simulation results in Fig. 2 show that P(p) for N »
1 approaches the delta function 6(p —p, ) [cf. Eq. (4)].
Thus, for 1 «s ~ n, we obtain the power-law behavior

2
D(s) = —s

7T

where r = 3/2, and for s ~ n we obtain an exponen-
tial cutoff exp[ —s/so(p, )]. These results are in good
agreement with our numerical results shown in Fig. 3.
The deviations from the power-law behavior (11) are
due to the fact that Eq. (8) is only valid for 1 « s ~ n

[15]. Performing a more accurate calculation, by the use
of the Gaussian distribution (4) instead of the N ~ ~
limit, 6(p —p, ), we recover the power-law behavior in

Eq. (11)with correction terms.
In an analogous fashion, we can calculate the asymp-

totic form of Q„(o., p) for 1 « cr ~ n and p ~ p, by
the use of a Tauberian theorem, with the result

g„(0,p) = exp[ —cr/o-o(p)], (12)
2(2p)"

~o(I + ~o)
where o.o(p) = [(2p)' —1]/2 ln2p. Hence, in the
SOBP model, the boundary avalanche distribution is

8D(o)= dp P(p-)Q„(cr, p) = —
2 exp( —2cr/n),

0 n
(13)

which agrees with our simulation results for n » 1 as
shown in Fig. 4 [19].

The avalanche lifetime distribution L(t) —t y can also
be computed. From D(a. = 0) = 1 —2/m [19] for
a system with m generations, we obtain L(m) —m

Identifying the number of generations m of an avalanche
with the time t, we thus obtain the mean-field value y =
2. This result is in complete agreement with simulations
on the SOBP model.

In summary, we have introduced a self-organized
branching process (SOBP) that captures the physical
features of the self-organization mechanism in sandpile
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