82 research outputs found

    Combined Superbase Ionic Liquid Approach to Separate CO2 from Flue Gas

    Get PDF
    [Image: see text] Superbase ionic liquids (ILs) with a trihexyltetradecylphosphonium cation and a benzimidazolide ([P(66614)][Benzim]) or tetrazolide ([P(66614)][Tetz]) anion were investigated in a dual-IL system allowing the selective capture and separation of CO(2) and SO(2), respectively, under realistic gas concentrations. The results show that [P(66614)][Tetz] is capable of efficiently capturing SO(2) in preference to CO(2) and thus, in a stepwise separation process, protects [P(66614)][Benzim] from the negative effects of the highly acidic contaminant. This results in [P(66614)][Benzim] maintaining >53% of its original CO(2) uptake capacity after 30 absorption/desorption cycles in comparison to the 89% decrease observed after 11 cycles when [P(66614)][Tetz] was not present. Characterization of the ILs post exposure revealed that small amounts of SO(2) were irreversibly absorbed to the [Benzim](−) anion responsible for the decrease in CO(2) capacity. While optimization of this dual-IL system is required, this feasibility study demonstrates that [P(66614)][Tetz] is a suitable sorbent for reversibly capturing SO(2) and significantly extending the lifetime of [P(66614)][Benzim] for CO(2) uptake

    2023 roadmap on photocatalytic water splitting

    Get PDF
    As a consequence of the issues resulting from global climate change many nations are starting to transition to being low or net zero carbon economies. To achieve this objective practical alternative fuels are urgently required and hydrogen gas is deemed one of the most desirable substitute fuels to traditional hydrocarbons. A significant challenge, however, is obtaining hydrogen from sources with low or zero carbon footprint i.e. so called ‘green’ hydrogen. Consequently, there are a number of strands of research into processes that are practical techniques for the production of this ‘green’ hydrogen. Over the past five decades there has been a significant body of research into photocatalytic (PC)/photoelectrocatalytic processes for hydrogen production through water splitting or water reduction. There have, however been significant issues faced in terms of the practical capability of this promising technology to produce hydrogen at scale. This road map article explores a range of issues related to both PC and photoelectrocatalytic hydrogen generation ranging from basic processes, materials science through to reactor engineering and applications for biomass reforming

    Sustainability of bioenergy – mapping the risks and benefits to inform future bioenergy systems

    Get PDF
    Bioenergy is widely included in energy strategies for its GHG mitigation potential. Bioenergy technologies will likely have to be deployed at scale to meet decarbonisation targets, and consequently biomass will have to be increasingly grown/mobilised. Sustainability risks associated with bioenergy may intensify with increasing deployment and where feedstocks are sourced through international trade. This research applies the Bioeconomy Sustainability Indicator Model (BSIM) to map and analyse the performance of bioenergy across 126 sustainability issues, evaluating 16 bioenergy case studies that reflect the breadth of biomass resources, technologies, energy vectors and bio-products. The research finds common trends in sustainability performance across projects that can inform bioenergy policy and decision making. Potential sustainability benefits are identified for People (jobs, skills, income, energy access); for Development (economy, energy, land utilisation); for Natural Systems (soil, heavy metals), and; for Climate Change (emissions, fuels). Also, consistent trends of sustainability risks where focus is required to ensure the viability of bioenergy projects, including for infrastructure, feedstock mobilisation, techno-economics and carbon stocks. Emission mitigation may be a primary objective for bioenergy, this research finds bioenergy projects can provide potential benefits far beyond emissions - there is an argument for supporting projects based on the ecosystem services and/or economic stimulation they may deliver. Also given the broad dynamics and characteristics of bioenergy projects, a rigid approach of assessing sustainability may be incompatible. Awarding ‘credit’ across a broader range of sustainability indicators in addition to requiring minimum performances in key areas, may be more effective at ensuring bioenergy sustainability
    corecore