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Abstract 

Gas phase photoreforming of methanol using a Pt/TiO2 photocatalyst has been performed 

under flow conditions at elevated temperatures.  Comparing the activity of the reforming 

process as a function of temperature under dark and irradiated conditions shows a significant 

enhancement in the rate of H2 production using the photo-assisted conditions at temperatures 

between 100-140 °C.  At higher temperatures, the effect of irradiation is small with the 

process dominated by the thermal process.  Deactivation of the catalyst was observed under 

irradiation but the catalyst was easily regenerated using an oxygen treatment at 120 °C.  

Diffuse Reflectance Infra-red Fourier Transform Spectroscopy (DRIFTS) showed that the 

activity of the catalyst could be correlated with the presence of the photogenerated trapped 

electrons.  In addition, lower amounts of CO adsorbed on Pt, compared to those observed in 

the dark reaction, were found for the UV-irradiated systems.  It is proposed that CO and 

adsorbed intermediates, such as formate, can act as inhibitors in the photoreforming process 

and this is further supported by the observation that, before and after the regeneration process 

in O2, the CO and surface adsorbed organic intermediate products are removed and the 

activity is recovered. 
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1. Introduction 

Hydrogen is attracting increasing interest as an energy carrier for use in fuel cell devices 

and although fuel cell technology is already mature, the production of hydrogen still remains 

a major issue. Currently, nearly all hydrogen is produced using fossil fuels and only 4% is 

produced by water electrolysis.1  An alternative approach to the production of hydrogen is via 

the photocatalysed cleavage of water which is an example of the direct conversion of solar 

into chemical energy.  In this area, many studies have been carried out in which a 

semiconductor photocatalyst is used to sensitise the photocleavage of water into H2 and O2.2  

However, in general, most visible light-absorbing photocatalysts are unstable and most solar 

UV absorbing photocatalysts, such as TiO2 are unable to drive the reaction forward without 

additional electrochemical or chemical (eg. via a pH gradient) bias.2,3  As a consequence, the 

use of sacrificial electron donors (SEDs), as semiconductor photogenerated hole scavengers, 

which are able to promote the efficient separation of the photogenerated charge carriers and 

the accumulation of photogenerated electrons, have been used to facilitate the reduction of 

water to hydrogen.4 This process can be referred to as photocatalytic reforming or, more 

simply, here as photoreforming, and it leads to a significant enhancement in the production of 

hydrogen compared to direct water splitting.  

As well as fossil fuel-based SEDs, biomass-derived compounds have been demonstrated 

as effective SEDs in the photoreforming process, since biomass is ultimately derived from 

CO2 in air, it follows that the production of CO2 during the photoreforming process leads to a 

near-zero carbon balance.4  The photoreforming of biomass-derived compounds, such as 

methanol,5- 8 ethanol9,10 or glycerol,10-12 in aqueous solutions has been studied thoroughly, 

usually at room temperature. Methanol is an ideal model as a sacrificial reductant and is often 

used for this purpose and so methanol was used as the SED in this study.  The overall 

photoreforming reaction is as follows: 

 

                                                         TiO2/Pt 

                                   CH3OH + H2O → CO2 + 3H2                     (1) 

                                                                   hν ≥ 3.2 eV 
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As indicated above, to date, most of the studies regarding the photoreforming of alcohols 

have been carried out in the liquid phase, using platinised TiO2 and under batch reaction 

conditions.  However, Kang13 reported hydrogen production upon irradiation of a Fe/TiO2 

photocatalyst dispersed in methanol/water solution in a liquid phase batch system in addition 

to some limited results for a continuous flow system.  For the photoreforming of alcohols, 

working in continuous flow is a very important step in view of the further practical 

application of the photoreforming process. For the majority of applications, continuous flow 

operation saves time, energy and costs, increasing the productivity and reducing the 

transportation costs.  In addition, little attention has been given to the effect of temperature.  

Interestingly, there have been only a few studies which examined the photoreforming of 

alcohols (methanol) in the gas phase and most, if not all, have been conducted at room 

temperature.1,13- 16  For example, Greaves et al.14 carried out the photoreforming of methanol 

in a batch gas phase system over Au/TiO2 photocatalysts. Chiarello et al. compared the rates 

of photoreforming of methanol in the gas phase over Au/TiO2,1,15 Pt/TiO2
1,16 and Ag/TiO2

1 

photocatalysts using a closed recirculating gas system.  

In this paper we describe the results arising from a study of the UV-driven, photocatalytic 

steam reforming of methanol over platinised titania in a continuous flow, gas phase system  

at reaction temperatures much greater than room temperature, i.e. between 100-200 °C.  In 

this work, in-situ DRIFTS has been used to study the effect of UV irradiation on the species 

adsorbed on the photocatalyst, in order to provide a greater mechanistic insight into the 

system.  

 

2. Experimental 

 

2.1 Photo photocatalyst preparation 

0.2 wt% Pt/TiO2 photocatalysts were prepared by wet impregnation of the metal 

precursor (H2PtCl6.6 H2O) onto TiO2 (P25, Degussa) followed by drying at 150 °C for 2 h 

and, thereafter, calcination at 500 °C for 2 h.  The photocatalyst was sieved to ensure that the 

aggregate size was between 250 and 420 μm prior to use.  The metal loading was measured 

using a Perkin Elmer Optima 4300 dv Inductively Coupled Plasma Optical Emission 

spectrometer (ICP-OES).  In its unreduced state the Pt will be mainly in the form of PtO2 and 

thus the pre-catalyst appears cream coloured.  However, upon reduction in the reactor at 200 
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°C 5% H2/Ar at 15 cm3 min-1 for 30 min, the photocatalyst takes on a light grey appearance, 

as the PtO2 is reduced to Pt. 

 

2.2 Photocatalyst characterisation 

 

The total surface area of the as prepared catalyst and catalyst reduced under reaction 

conditions (used catalyst) were measured using a Micromeritics ASAP2020 and the BET 

method.   

XRD patterns were obtained using a PANalytical X’Pert Pro X-ray Diffractometer using 

Cu Kα irradiation. Diffractograms were carried out from 10o to 90o, with a step size of 0.008o. 

Crystal sizes in the different phases were estimated from line broadening of the 

corresponding X-ray diffraction peaks using the Scherrer equation. The anatase/rutile ratio 

was calculated by examining the relative peak intensities of crystalline planes (101) and (111) 

of anatase and rutile, respectively. 

High resolution transmission electron microscope (HRTEM) images, scanning transmission 

electron microscope (STEM) images and energy dispersive X-ray spectroscopy (EDS) 

spectrum images were obtained with an FEI Talos F200A microscope equipped with an X-

FEG electron source and Super-X SDD EDS detectors. The experiment was performed using 

an acceleration voltage of 200kV and a beam current of approximately 0.5 nA. TEM Images 

were recorded with an FEI CETA 4k x 4k CMOS camera. STEM images were acquired with 

a HAADF detector. The sample was supported on a holey carbon film with a 300 mesh 

copper TEM grid.    

2.3 Photocatalytic activity testing 

The irradiation of the photocatalyst-filled 'S-bend' reactor tube, i.e. the 'photocatalyst bed', 

at elevated temperatures was undertaken using an in-house developed reactor setup, the main 

features of which are illustrated in Figure 1(a).  The reactor comprised: a semi-cylindrical 

ceramic fibre heater (Watlow) with quartz cylinder envelope, with the gap between the tube 

and the heater filled with a ceramic fibre blanket to provide thermal insulation, except for an 

insulation-free window to allow the irradiation of the heated photocatalyst bed, illustrated in 

Figure 1(b), which was placed next to the heater semi-cylinder.  All illuminations were 
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carried out using a 200 W Xe/Hg arc lamp (Oriel), which provided a typically UV irradiance 

of 19 mW cm-2. 

To protect the lamp from the heat of the furnace, a second quartz cylinder, concentric to 

the first but with a diameter 1.5 cm larger than the inner cylinder, was utilised.  Holes were 

drilled in the table between these cylinders to allow the external cylinder to cool by air 

convection. A serpentine shaped, i.e. S-bend', Pyrex™ glass reactor (internal diameter 1.5 

mm) was used for the photocatalytic experiments (Figure 1b), in which typically, 800 mg of 

photocatalyst were placed in order to fill the irradiated section of the S-bend reactor.  Pyrex™ 

cuts off all wavelengths below 300 nm, and so no high energy UVC irradiation from the light 

source reached the photocatalyst.  The serpentine shape increased the catalyst surface area 

that was exposed to the light compared with a conventional tubular plug flow reactor.  The 

reactor temperature was measured at three points corresponding to the top, middle and 

bottom of the photocatalyst bed by thermocouples attached to the outer wall of the reactor.  

The temperature of the furnace was adjusted so that the temperature in the middle of the 

photocatalyst bed remained constant and at the desired value (Table S1).  

The reaction gases supplied by BOC were certified standards of: Ar (99.999% purity), H2 

(99.999% purity), 5% O2/Ar and C2H4 (99.999% purity); the latter was used as an internal 

standard and injected into the gas stream at the exit of the reactor.  The gas flow was 

controlled using calibrated mass flowmeters (Brooks) and the water and methanol were fed 

into the feed stream by separate saturators whose temperature were controlled using 

recirculating water baths. All lines downstream of the saturators were trace heated to above 

100 °C to prevent condensation.  The gas feed into the photoreactor consisted of 3% 

methanol plus 10% water (in Ar) with a total flow of 10 cm3 min-1 resulting in a weight 

hourly space velocity of 750 cm3 h-1 gcat
-1.  The reactor volume was ~0.43 cm3 and, therefore, 

the gas hour space velocity was ~ 1398 h-1 with a residence time of ~2.6 s..  The reactants and 

products were analysed using a Gas Chromatograph (Perkin Elmer) fitted with a Porapak D 

column with a TCD, for the analysis of H2, and a FID (with methanizer), for the analysis of 

CO, CO2, methanol and the ethylene internal standard. At the start of each photoreaction, the 

reactor was flushed with Ar and cooled to the desired reaction temperature before exposure to 

the feed and subsequent illumination.  

 

2.4 In-situ DRIFTS of photoreforming reaction: 
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Photoreforming of 0.2% Pt/TiO2 photocatalysts was also studied using in-situ DRIFTS 

utilising an in-house modified environmental chamber (Spectra Tech) which contained a UV 

LED lamp (365 nm from LED Engin) positioned ~ 1 cm above the photocatalyst bed in the 

top plate of the environmental chamber (Figure 2); the irradiance was typically 35 mW cm-2.  

The photocatalyst was pre-reduced in 5% H2/Ar at 200 °C for 30 min at 50 cm3 min-1and then 

the reactor was purged with Ar and cooled to 100 °C before exposure to the feed (3% MeOH 

plus 10% H2O in Ar total flow 50 cm3 min-1).  Spectra were recorded (resolution 4 cm-1, 32 

scans) under a continuous flow of the methanol/water feed alternating between dark and UV 

conditions.  The reduced photocatalyst was used as the background spectrum and all spectra 

shown as reported at log(1/R) where R is reflectance of photocatalyst under the reaction 

feed/reflectance of the reduced photocatalyst.  

 

3 Results and Discussion: 

3.1 Characterisation of 0.2% Pt/TiO2: 

The 0.2% Pt/TiO2 photocatalyst was characterised by XRD and HRTEM and the results 

are shown in the supplementary information as well as its total surface area measured by 

BET.  The BET surface area of the fresh catalyst was 53.0 m2 g-1 and the used catalyst had a 

BET surface area of 49.1 m2 g-1.  Figure S1 shows the diffractograms for the pure TiO2 

support (P25) and the fresh and used Pt/TiO2 photocatalyst. In addition, Table S2 summarizes 

the crystallite size of the TiO2 anatase and rutile phases, together with the anatase phase 

percentage. No significant modification in crystallinity or crystal phase was found comparing 

the pure support, or fresh or used catalyst. This is in good agreement with previous studies 

regarding the range of temperatures for anatase-rutile phase transition, which indicates that 

temperatures higher than 600 °C are required.17,18  No peaks corresponding to Pt or PtOx 

were observed which may be a reflection of the low metal loading and/or a high dispersion of 

Pt.  For the catalyst reduced under reaction conditions (used catalyst), a similar XRD pattern 

was observed with only TiO2 related features found. Pt nanoparticles (2-3 nm) were observed 

using HRTEM.(Figure S2).  This aggregation of Pt may have led to some pore blocking and 

the small reduction in the BET surface area.      

 

3.2 Thermal and Photocatalytic activity 
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The effect of the UV-vis irradiation on the steam reforming reaction was examined 

through a series of light-on/light-off cycles as a function of temperature. Figure 3 displays the 

catalytic activity in the presence and absence of irradiation for the methanol steam reforming 

reaction over the 0.2% Pt/TiO2 catalyst/photocatalyst.  The temperature was increased from 

100 to 200 °C in steps of 20 °C maintaining the temperature for 2 h at each point (1 h under 

dark then 1 h under UV irradiation).   

3.2.1 Light off results 

Under dark conditions, an increase in the methanol conversion from 12% at 100 °C to 

20% at 180 °C with a further significant increase to 40% at 200 °C was observed.  These 

changes were also reflected in the H2 and CO2 production rates which increased with 

increasing temperature while the rate of CO formation remained relatively constant with 

temperature leading to a gradual decrease in the CO/CO2 ratio.  In addition, trace amounts of 

methane were formed at a rate of < 10-7 mol h-1 gcat
-1.  No other C-containing species were 

observed under thermal conditions.  

The thermal (i.e. dark) gas phase catalytic steam reforming of methanol over Pt/TiO2 has 

been well-studied.19- 21  As reported for Group VIII metal catalysts (such as Pt and Pd), the 

main reactions leading to the production of H2 are methanol steam reforming (the dark 

equivalent of reaction (1)) and methanol decomposition, i.e.:  

CH3OH  CO + 2 H2     (2) 

Figure 4 shows the experimental hydrogen production for both the thermal, and 

thermal/photoassisted, experiments compared with the predicted hydrogen production 

according to reactions (1) and (2). The predicted hydrogen production was calculated 

according to equation (3): 

𝑟𝑟𝐻𝐻2 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 2 × 𝑟𝑟𝐶𝐶𝐶𝐶 𝑒𝑒𝑒𝑒𝑒𝑒 + 3 × 𝑟𝑟𝐶𝐶𝐶𝐶2 𝑒𝑒𝑒𝑒𝑒𝑒     (3)      

where 𝑟𝑟𝐶𝐶𝐶𝐶 𝑒𝑒𝑒𝑒𝑒𝑒 and 𝑟𝑟𝐶𝐶𝐶𝐶2 𝑒𝑒𝑒𝑒𝑒𝑒 are the hydrogen production rates shown in Figure 3.  For the 

thermal catalytic process, (filled triangles, Figure 3, the straight line with a unity gradient 

demonstrates that any other reaction intermediates are quickly consumed under the reaction 

conditions studied, and their concentrations are negligible compared to the production of CO 

and CO2.  In addition, it shows that reactions (1) and (2) are the dominant thermal catalytic 

processes on the Pt/TiO2.  The fact that the CO production does not vary significantly (from 
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16 to 20 x 10-5 mol h-1 gcat
-1) over the temperature range studied in the dark suggests that 

methanol decomposition, i.e. reaction (2), is a major background reaction  but, at high 

temperatures, steam reforming, i.e. reaction (1), also become significant; this observation is 

consistent with previous reported studies.19  The formation of CO relative to CO2 (CO/CO2 

ratio shown in Figure 3) provides a measure of the relative rates of reactions (1) and (2).  The 

decrease in ratio with increasing temperature shows that at the higher reaction temperatures 

steam reforming becomes the dominant route for methanol conversion.   

 

3.2.2 UV light on results 

Under UV irradiation, enhanced methanol conversion and hydrogen production rates of 

up to a factor of 2 were observed at all temperatures below 160 °C relative to reaction carried 

out without UV light (Figure 3).  For example, under irradiation the H2 production was 75 x 

10-5 mol h-1 gcat
-1

 at 100 °C compared with 40 x 10-5 mol h-1 gcat
-1 under dark conditions.  

Enhancements were also observed for both CO2 and CO showing that the photocatalytic 

process enhances both the decomposition of MeOH, reaction (2), and the photoreforming of 

ethanol, reaction (1).  It is only above 160 °C that the CO/CO2 ratio starts to decrease and 

match the trend of the dark reaction.  The latter results indicate that at increasing 

temperatures above 160 °C, the photocatalytic process makes a decreasing contribution to the 

overall rate of hydrogen generation via reactions (1) and (2), which are increasingly thermally 

driven.  This is also shown by the fact that in the light-driven process the conversion of 

methanol and the rates of formation for all the products are approximately invariant with 

temperature below 160 °C.  The decrease in CO/CO2 ratio with increasing temperature above 

160 °C could be due to the steam reforming reaction (1) beginning to dominate with 

increasing temperature above this point, compared to methanol decomposition reaction (2) or 

an increase in the water gas shift reaction (4).  The latter has been shown to be active at these 

temperatures over Pt/TiO2.22 

CO + H2O  CO2 + H2     (4) 

As found with the thermally activated process, Figure 4 shows that there is a good 

agreement with the predicted H2 production from the steam reforming and methanol 

decomposition reactions under photo-activated conditions demonstrating the lack of by-

products.  For example, the small amount of methane production is similar to that found for 
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the thermally activated reaction.  It should be noted that the extent of direct water splitting 

using 10% water only under these conditions is <5 x 10-5 mol h-1 gcat
-1.  

The above results show that, in the dark at low temperatures, the decomposition of 

MeOH, with concomitant production of CO, is the dominant process.  In contrast, under 

illumination at the same temperatures, i.e. <160 °C, the photocatalysed steam reforming 

reaction (1) is a major process.  It should be noted that the decomposition of MeOH, reaction 

(2), is also enhanced by photocatalysis at temperatures <160 °C. 

The rates of hydrogen production are lower than found by Chiarelli et al.1,16 using a 

recirculating gas phase photocatalytic system.  Therein, for a wet impregnated 0.5 % Pt/TiO2 

catalyst, the H2 production rate was 775 x 10-5 mol h-1 gcat
-1 (1.55 mol h-1 gPt

-1) at 55 oC 

compared with 75 x 10-5 mol h-1 gcat
-1 (0.375 mol h-1 gPt

-1) at 100 oC in the present case.  This 

difference is likely to be associated with the higher flux of photons in both studies and the 

change in reactor geometry.  Importantly, whilst the rate is lower, herein, only trace amounts 

of methane wereobserved and no other carbon containing species.  Chiarelli et al. 1,16 reported 

the formation of formic acid, formaldehyde, dimethyl ether and esters as well as methane 

which may be the result of operating in a recirculating mode. 

 

3.2.2 In-situ DRIFTS of the photoreforming of methanol: 

To study the effect of irradiation upon surface adsorbed species, in-situ DRIFTS was 

performed under a methanol/water feed at temperatures between 100 and 180 °C switching 

between dark and light conditions.  Figure 5 shows the DRIFT spectra for the reaction with 

and without irradiation at 100 °C.  In the dark at 100 °C, the species adsorbed on the Pt/TiO2  

photocatalyst include undissociated methanol with bands at 2947, 2844 cm-1 and 1070 cm-1 

(νas(CH3), νs(CH3) and νs(C-O)), respectively, and methoxy groups with bands at 2924 and 

2823 cm-1 (νas(CH3) and νs(CH3)), 1463 and 1437 cm-1 (δa(CH3) and δs(CH3) and 1140 cm-1 

due to ν(C-O) of methoxy groups.23,24  The formation of methoxy groups has been observed 

on TiO2 supported photocatalysts through exchange with hydroxyl groups on the support.  

This results in a broad negative band between 3500 and 3700 cm-1 as methanol 

adsorbs/dissociates on the titania surface.  Formates are also observed with bands at 1559, 

1360 due to νas(COO)and νs(COO) and 1379 cm-1  due to C-H of bidentate formate species.25  

Adsorption of CO on Pt was also observed with bands at 2072 and 2030 cm-1 due to linear 

adsorption on Pt metal.  This is expected given that methanol decomposition to CO and H2 
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via reaction (2) occurs in the dark even at low temperatures.  Interestingly, the adsorption of 

CO on Pt under dark conditions is in contrast to the DRIFTS-MS study of Highfield et al., 

wherein over a 1% Pt/TiO2 catalyst, CO adsorption on Pt was only observed following 

exposure of 1% Pt/TiO2 to methanol/water in the presence of irradiation albeit this was under 

batch conditions and at much lower (<70 °C) temperatures than used here.26   

Under irradiation, the only major change in the DRIFT spectra is a broad absorbance 

increase across the entire spectrum from 1000-2500 cm-1 (Figure 5). The increasing 

absorbance for TiO2 and TiO2-based photocatalysts has been attributed to IR absorbance of 

the UV generated electrons in shallow trapped states of the conduction band electrons in TiO2 

with the maximum observed at ~1800 cm-1.23,27  The small changes above 3000 cm-1 are 

likely to be changes in the surface hydroxyl species on exposure to irradiation.  In this study, 

the change in absorbance was only observed for 0.2%Pt/TiO2 (or TiO2) when exposed to 

methanol only or methanol plus water feeds and at temperatures up to 180 °C, i.e. no change 

in absorbance was observed at 200 °C under the same reaction conditions.  This observation 

suggests that in the gas phase the reduction of water to hydrogen at the Pt sites is the rate-

determining step, i.e. hole trapping is rapid and, as a result, photogenerated electrons 

accumulate, because the reduction of H2O to H2 on the Pt particles is rate-determining.  This 

observation is supported by the in situ FT IR and time resolved study on reaction (1) reported 

by Chen et al.,23 who report that 'the decay rate of the [photo-generated] long-lived electrons 

correlates well with the activity of H2 production' and that 'the yield of long-lived electrons 

could be responsible for the activity of H2 production'.   

The extent of change in absorbance under UV irradiation (ΔAbs at 1800 cm-1) provides 

an indication of the population of the photogenerated, shallow-trapped electrons.  As stated 

above, the trapped electron population for 0.2% Pt/TiO2 decreases with increasing reaction 

temperature (Figure 6), which suggests that electron-hole recombination becomes 

increasingly rapid with increasing temperature and this can be related to the observation that, 

at elevated temperatures, little or no enhancement in the methanol conversion and formation 

rate of H2 was found under irradiation compared with the dark reaction (Figure 3).    

At 100 °C, exposure of the photocatalyst to UV light caused a rapid depletion of ~20% in 

the Pt-CO band area for the duration of exposure to UV light (Figure 7). When the UV light 

was switched off, the Pt-CO band area recovered to a value similar to that found before the 

Pt/TiO2 photocatalyst was irradiated.  This UV-induced decrease in Pt-CO band area was 
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observed at temperatures up to 180 °C with the extent of the change in band area decreasing 

as the reaction temperature increased (Figure 7).  Interestingly, from the results illustrated in 

Figure 3 for the same system the rate of formation of CO was also enhanced under UV 

conditions.  Thus, the decrease in adsorbed CO on Pt observed using in situ DRIFTS is 

associated with the photocatalyst becoming more active with regard to the steam-reforming 

reaction (1).  This suggests that CO adsorption impedes reaction (1) so that an initial key step 

is the photocatalysed removal of CO from the Pt, so as to allow reaction (1) to proceed more 

efficiently.  

  

3.2.3: Photocatalytic Mechanism 

Mechanistic interpretation of the above results is complicated by the fact that at all 

temperatures both reactions (1) and (2) are promoted thermally and photocatalytically.  

However, at 100 oC the reforming reaction (1) appears largely due to photocatalysis, resulting 

in a significant increase in the rate of CO2 production upon UV illumination.  A brief outline 

of the proposed photocatalytic mechanism is given below. 

The mechanism for the reforming of methanol photocatalysed by Pt/TiO2 is still the 

subject of much debate with many alternative mechanisms, in which most, or part of the 

hydrogen generated is derived from thermal, rather than photochemical, versions of reactions 

(1) and (2).10,15,23,25  Herein, we adopt a popular interpretation, based on an electron flux 

matching approach,23,28 often used in photocatalysis, which has its origins in 

photoelectrochemistry and the interpretation that a platinised TiO2 particle can be viewed as a 

micro-photoelectrochemical cell in which the TiO2 functions as a photoanode and the Pt as a 

'dark' cathode.  Consistent with the flux-matching mechanism, it is worth noting that the 

photo-oxidation of methanol (at a TiO2 photoanode), and concomitant dark reduction of 

water to hydrogen, is a very well-studied process.29 

In the flux-matching mechanism, after the photogeneration of an electron-hole pair (5) 

on the TiO2 photocatalyst particles , i.e. 

 

                                                                 UV 

                                               TiO2  →  TiO2 (h+,e-)     (5) 
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the rate of consumption of photogenerated electrons is matched by that of the holes, R.  In the 

absence of a sacrificial electron donor such as MeOH, the value of R is effectively the rate of 

recombination of the photogenerated electrons and holes to generate heat, ∆, i.e. 

                                       TiO2 (h+,e-)    →  TiO2  +  ∆    (6) 

 

In the presence of a SED, the overall rate of reaction of the holes, Rh, with MeOH and 

subsequent reaction intermediates, will then be matched by the overall rate of reaction of the 

electrons, Re.  If Pt and H2O are present, as in this work, the usual fate of the photogenerated 

electrons will be trapping by the dispersed Pt particles on the TiO2 and the subsequent 

reduction of water to H2,23,30,31 i.e.  

                                                                               Pt 

                                               2e-  +  2H2O  →  H2  +  2OH-          (7)                                              

 

In contrast, the photo-oxidation of MeOH by the photogenerated holes is believed16,30,31 to 

occur on the surface of TiO2,, forming intermediate levels of formaldehyde and formic acid 

before ultimately yielding CO2,26,28 i.e.  

                2h+, -2H+                 2h+, H2O, -2H+                       2h+, H2O 

H3COH  →  H2CO   →  HCOOH  →  CO2  + 2H+     (8) 

Support for this overall mechanism, which will give the observed 3:1 yield of H2 to CO2, 

is provided by previous observations23,26,28 as well as the present study.  Possibly the 

strongest piece of evidence for the above, all photocatalytic, no thermal, mechanism, derives 

from the recent work of Kandiel et al., who have shown, through isotopic labelling studies 

that the H2 produced by this system is mainly produced by the reduction of protons 

originating from water.28  In this work, in agreement with previous studies,26 the DRIFTS 

reveals the photo-generation of formaldehyde and formic acid/formate.  Interestingly, here 

we find clear evidence for the photogeneration of formate, i.e. its ambient surface level 

increases under irradiation and stops under dark conditions.  In contrast, Highfield et al. 
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attributed the formate changes are due to a thermal process that leads to some thermal H2 

mechanism being present.26   

Although MeOH dehydrogenates on Pt in the dark, via reaction (2) and the CO adsorbs 

on the Pt, from the observed drop in Pt-CO signal in DRIFTS with illumination, this process 

appears to be reduced significantly, upon illumination of the Pt/TiO2 photocatalyst.  This may 

be associated with the negative effect on the adsorption process, of charging of the Pt 

particles by the photogenerated electrons and their subsequent reaction via reaction (3).26  

The observed increase in background IR absorbance observed in DRIFTS, is compatible with 

the above flux-matching mechanism,26-28 assuming that reaction (7) is sufficiently slow as to 

allow the photogenerated electrons to accumulate on the TiO2, as Ti(III), which are often 

referred to as free conduction band electrons, although they are in fact trapped electrons, and 

referred to here as such.32   

In contrast to the photocatalytic system, in the dark, at low temperatures the Pt/TiO2 

catalyst appears to mediate predominately reaction (2), the dehydrogenation of MeOH (i.e. 

methanol decomposition), rather than the steam reforming process, reaction (1), see Figure 2.  

As the temperature is elevated, the latter reaction plays an increasingly important role, 

presumably as the water-gas shift reaction starts to dominate, as is often seen with PGM/TiO2 

thermal catalysts.33- 35  DRIFTS shows the presence of methoxy and formate species, both of 

which have been seen before for Au/TiO2 catalysts34,35 and have been accounted for in a 

proposed mechanism involving anion vacancies on the TiO2.35 

 

3.2.4 Deactivation and regeneration of 0.2% Pt/TiO2: 

While a UV enhancement in the steam reforming reaction (1) was observed, using the 

0.2% Pt/TiO2 at 120 °C over 1 h (Figure 3), for longer irradiations a slow deactivation of the 

photocatalyst was observed (Figure 8).  To regenerate the original activity of the 

photocatalyst, the latter was UV irradiated in-situ in an O2/H2O stream for 2 h at the same 

temperature (120°C), in order to promote the photocatalysed oxidation of any adsorbed C-

containing compounds, such as CO and formate, that are probably responsible for impeding 

the overall photocatalytic process. There may also be some carbon deposition on the surface 

although the mass balance of the reaction is close to quantitative indicating that any carbon 

deposition is likely to be small.  Figure 8 shows that this treatment resulted in catalyst 
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regeneration.  Importantly, this effect is only associated with the oxygen, treatment under 

H2O/Ar, with or without UV, did not result in reactivation of the catalyst (Figure 9). In-situ 

DRIFTS performed under the O2 regeneration treatment after 16 h of photoreforming reaction 

at 120 °C showed complete removal of all CO adsorbed on Pt with formation of gas phase 

CO2. This is in line with other studies which have reported that the oxidation of CO on 

Pt/TiO2 photocatalysts is very efficient under high O2/CO ratios at temperatures higher than 

100 °C.36  Interestingly, for both the as prepared catalyst and the regenerated catalyst a small 

induction period is observed.  This may be associated with photo-reduction of the catalyst 

surface.  Whilst this is clear following the oxidative regenerative treatment, prior to the initial 

reaction, the catalyst is pre-reduced.  However, in the latter case it should be noted that, prior 

to irradiation, the system was equilibrated with the gas feed where the water can surface 

oxidise the catalyst which then leads to the induction period. 

 

Conclusions 

In this study, a novel photocatalytic reactor was designed and utilised to probe the 

continuous flow photoreforming of methanol at elevated temperatures over a Pt/TiO2 

photocatalyst.  A significant UV enhanced activity was observed at temperatures between 

100 and 140 °C above which the photocatalyst began to exhibit a significant background 

thermal activity so that the difference in activity between dark and UV irradiated reactions is 

reduced markedly.  The temperature range where enhanced steam reforming photocatalytic 

activity was observed correlated with the establishment of a clearly discernible population of 

photogenerated, trapped electrons as well as with the reduction in the amount of CO adsorbed 

on Pt as monitored by in-situ DRIFTS.  The presence of increasing amounts of strongly 

adsorbed CO/intermediates on the photocatalyst during the reaction is proposed to be the 

cause of the gradual deactivation under photoreforming conditions, although this can be 

reversed, and the photocatalyst regenerated, by irradiating the photocatalyst in humid oxygen.   
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Figure 1. (a) Schematic representation of the overall reactor set up, showing: (A) the semi-
cylidrical heater, (B) the thermal insulation and (C) the 'S-bend' reactor tube, all contained in 
an inner quartz tube, with an outer one for further insulation (the arrows indicate the direction 
of the reaction gas flow, and (b) expanded view of the photocatalyst filled 'S-bend' quartz 
reactor tube (i.d. 1.5 mm). 
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Figure 2: Schematic of photocatalytic in-situ DRIFTS setup. 
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Figure 3. Effect of the reaction temperature and the photoirradiation of the catalyst in the 
activity for methanol steam reforming. Reaction conditions: 800 mg catalyst 0.2% Pt/TiO2 
(P25), 120 oC, 5%MeOH/10% H2O, Total flow 10 cm3 min-1 (Ar carrier). Photoirradiation 
with 200 W Xe/Hg lamp. The methanol conversion value corresponds to that measured after 
1 h (in the dark or UV light).  

 

 

 

 

 

 

 

 

  



20 
 

 

Figure 4. H2 production rate (r H2) vs. predicted H2 rate according to eqn (3) using the rate 
data in Figure 3.    

  

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100 120 140 160 180

r H
2

/ 1
0-5

m
ol

 h
-1

g c
at

-1

r H2 predicted / 10-5 mol h-1 gcat
-1

Dark
Irradiation



21 
 

 

Figure 5: DRIFT spectra of 0.2% Pt/TiO2 under 5% CH3OH + 10% H2O feed at 100 °C 
(grey) and under 5% CH3OH + 10% H2O feed at 100 °C after 14 s of UV irradiation (black).  
Spectra have been corrected for gas phase methanol.   
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Figure 6: Change in absorbance at 1800 cm-1 after 14 s of UV irradiation for 0.2% Pt/TiO2 
under 5% CH3OH + 10% H2O feed at increasing reaction temperatures. 
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Figure 7: DRIFT spectra of Pt-CO bands at 100 °C in dark (blue spectrum) and under UV 
irradiation (black spectrum)  
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Figure 8. Effect of the photoirradiation of the catalyst in the production of H2, CO, CO2 and 
methanol conversion. Reaction conditions: 800 mg catalyst 0.2 % Pt/TiO2 (P25), 120 oC, 5 
% MeOH/10 % H2O, Total flow 10 mL min-1 (Ar carrier). Regeneration treatment: 120 oC, 
non photo-irradiation, 16 % O2/20 % H2O, 12.5 cm3 min-1. Photoirradiation with 200 W 
Xe/Hg lamp.    
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