122 research outputs found
Automation of Pivot Sprinkler Irrigation Systems to More Efficiently Utilize Rainfall and Irrigation Water
A study was conducted to develop automated pivot sprinkler irrigation systems and determine if such systems use less water and energy than manually operated systems. The study was conducted near Earth, Texas, using irrigation systems located on producers farms.
Sensors with transmitters and receivers were constructed and tested so that the irrigation systems can be controlled by wind, soil water tension, and rainfall. The sensors can be used separately or in combination to control the irrigation systems.
For several reasons it was not possible to determine if automated systems use less water and energy than manually operated systems. The major reason was the low capacity of the wells (114 to 204 m3/hr) supplying the irrigation systems.
To meet crop water requirements and losses due to evaporation and runoff, the well capacity should be at least 284 m3/hr. Since the wells could not supply adequate water, soil water tension was out of the tensiometer range for the last 60 days of the growing season. Considerable variation in soil water tension and content was noted between irrigation systems and within quadrants of each irrigation system. Systems planted to cotton would probably be easier to automate than those planted in corn because of the lower water requirements of cotton.
The wind and rainfall controls have more promise to aid in increasing water use efficiency than controls activated by soil water sensors. Wind controls could be used during preirrigation when more time is available to apply water and rainfall controls could be an aid to producers with remotely located irrigation systems
Infrared skin damage thresholds from 1940-nm continuous-wave laser exposures
A series of experiments are conducted in vivo using Yucatan mini-pigs (Sus scrofa domestica) to determine thermal damage thresholds to the skin from 1940-nm continuous-wave thulium fiber laser irradiation. Experiments employ exposure durations from 10 ms to 10 s and beam diameters of approximately 4.8 to 18 mm. Thermal imagery data provide a time-dependent surface temperature response from the laser. A damage endpoint of minimally visible effect is employed to determine threshold for damage at 1 and 24 h postexposure. Predicted thermal response and damage thresholds are compared with a numerical model of optical-thermal interaction. Results are compared with current exposure limits for laser safety. It is concluded that exposure limits should be based on data representative of large-beam exposures, where effects of radial diffusion are minimized for longer-duration damage threshold
Сучасний стан і проблеми управління залізничним транспортом України
Проаналізовано стан і тенденції розвитку залізничного транспорту. Розглянуті основні завдання державного регулювання галузі.Проанализировано состояние и тенденции развития железнодорожного транспорта. Рассмотренны основные задания государственного регулирования отрасли.The condition and trends of railway transport has been anilized. The main tasks of state regulation of railway transport has been considereted
Subduction controls the distribution and fragmentation of Earth’s tectonic plates
International audienceThe theory of plate tectonics describes how the surface of the Earth is split into an organized jigsaw of seven large plates 1 of similar sizes and a population of smaller plates, whose areas follow a fractal distribution 2,3. The reconstruction of global tectonics during the past 200 My 4 suggests that this layout is probably a long-term feature of our planet, but the forces governing it are unknown. Previous studies 3,5,6 , primarily based on statistical properties of plate distributions, were unable to resolve how the size of plates is determined by lithosphere properties and/or underlying mantle convection. Here, we demonstrate that the plate layout of the Earth is produced by a dynamic feedback between mantle convection and the strength of the lithosphere. Using 3D spherical models of mantle convection with plate-like behaviour that match the plate size-frequency distribution observed for Earth, we show that subduction geometry drives the tectonic fragmentation that generates plates. The spacing between slabs controls the layout of large plates, and the stresses caused by the bending of trenches, break plates into smaller fragments. Our results explain why the fast evolution in small back-arc plates 7,8 reflects the dramatic changes in plate motions during times of major reorganizations. Our study opens the way to use convection simulations with plate-like behaviour to unravel how global tectonics and mantle convection are dynamically connected
Landsat 9 TIRS-2 Architecture and Design
TIRS-2 will fly on the LandSat 9. Like TIRS on Landsat 8, TIRS-2 will produce radiometrically calibrated, geo-located thermal image data. USGS is responsible for operational code. TIRS-2 image data will have the same performance characteristics as that of TIRS on Landsat 8 except better in some cases
Recommended from our members
Protective intraoperative ventilation with higher versus lower levels of positive end-expiratory pressure in obese patients (PROBESE): study protocol for a randomized controlled trial
Background: Postoperative pulmonary complications (PPCs) increase the morbidity and mortality of surgery in obese patients. High levels of positive end-expiratory pressure (PEEP) with lung recruitment maneuvers may improve intraoperative respiratory function, but they can also compromise hemodynamics, and the effects on PPCs are uncertain. We hypothesized that intraoperative mechanical ventilation using high PEEP with periodic recruitment maneuvers, as compared with low PEEP without recruitment maneuvers, prevents PPCs in obese patients. Methods/design The PRotective Ventilation with Higher versus Lower PEEP during General Anesthesia for Surgery in OBESE Patients (PROBESE) study is a multicenter, two-arm, international randomized controlled trial. In total, 2013 obese patients with body mass index ≥35 kg/m2 scheduled for at least 2 h of surgery under general anesthesia and at intermediate to high risk for PPCs will be included. Patients are ventilated intraoperatively with a low tidal volume of 7 ml/kg (predicted body weight) and randomly assigned to PEEP of 12 cmH2O with lung recruitment maneuvers (high PEEP) or PEEP of 4 cmH2O without recruitment maneuvers (low PEEP). The occurrence of PPCs will be recorded as collapsed composite of single adverse pulmonary events and represents the primary endpoint. Discussion To our knowledge, the PROBESE trial is the first multicenter, international randomized controlled trial to compare the effects of two different levels of intraoperative PEEP during protective low tidal volume ventilation on PPCs in obese patients. The results of the PROBESE trial will support anesthesiologists in their decision to choose a certain PEEP level during general anesthesia for surgery in obese patients in an attempt to prevent PPCs. Trial registration ClinicalTrials.gov identifier: NCT02148692. Registered on 23 May 2014; last updated 7 June 2016. Electronic supplementary material The online version of this article (doi:10.1186/s13063-017-1929-0) contains supplementary material, which is available to authorized users
- …