8 research outputs found

    Utilization of temperature kinetics as a method to predict treatment intensity and corresponding treated wood quality : durability and mechanical properties of thermally modified wood

    Get PDF
    Wood heat treatment is an attractive alternative to improve decay resistance of wood species with low natural durability. However, this improvement of durability is realized at the expense of the mechanical resistance. Decay resistance and mechanical properties are strongly correlated to thermal degradation of wood cells wall components. Mass loss resulting from this degradation is a good indicator of treatment intensity and final treated wood properties. However, the introduction of a fast and accurate system for measuring this mass loss on an industrial scale is very difficult. Nowadays, many studies are conducted on the determination of control parameters which could be correlated with the treatment conditions and final heat treated wood quality such as decay resistance. The aim of this study is to investigate the relations between kinetics of temperature used during thermal treatment process representing heat treatment intensity, mass losses due to thermal degradation and conferred properties to heat treated wood. It might appear that relative area of treatment temperature curves is a good indicator of treatment intensity. Heat treatment with different treatment conditions (temperature-time) have been performed under vacuum, on four wood species (one hardwood and three softwoods) in order to obtain thermal degradation mass loses of 8, 10 and 12%. For each experiment, relative areas corresponding to temperature kinetics, mass loss, decay resistance and mechanical properties have been determined. Results highlight the statement that the temperature curves’ area constitutes a good indicator in the prediction of needed treatment intensity, to obtain required wood durability and mechanical properties such as bending resistance and Brinell hardness.LERMaB is supported by the French National Research Agency through the Laboratory of Excellence ARBRE (ANR-12- LABXARBRE-01), the authors gratefully acknowledge this ai

    Mechanical characterization of heat-treated ash wood in relation with structural timber standards

    Get PDF
    Heat treatment is an attractive method to enhance wood durability, and valorize local hardwood species with natural low durability. Yet no standard allows the certification of such products. This study first aims to observe the influence of heat treatment on the different mechanical properties. The standard mechanical tests; bending, tension parallel and perpendicular to grain, compression parallel and perpendicular to grain and shear, have been performed on native and heat-treated woods samples. The measurements are then compared to values of EN 338 standard. Results reveal that shear strength is the property most affected by heat treatment and that the modulus of elasticity perpendicular to grain is increased. The values given by EN 338 standard are generally safe with the exception of shear strength which is underestimated by current relationships. It is suggested that new relationships have to be provided for heat-treated wood, taking into account the loss of shear resistance

    Resistance of thermally modified ash (Fraxinus excelsior L.) wood under steam pressure against rot fungi, soil-inhabiting micro-organisms and termites

    Get PDF
    Thermal modification processes have been developed to increase the biological durability and dimensional stability of wood. The aim of this paper was to study the influence of ThermoWood® treatment intensity on improvement of wood decay resistance against soil-inhabiting micro-organisms, brown/white rots and termite exposures. All of the tests were carried out in the laboratory with two different complementary research materials. The main research material consisted of ash (Fraxinus excelsior L.) wood thermally modified at temperatures of 170, 200, 215 and 228 °C. The reference materials were untreated ash and beech wood for decay resistance tests, untreated ash wood for soil bed tests and untreated ash, beech and pine wood for termite resistance tests. An agar block test was used to determine the resistance to two brown-rot and two white-rot fungi according to CEN/TS 15083-1 directives. Durability against soil-inhabiting micro-organisms was determined following the CEN/TS 15083-2 directives, by measuring the weight loss, modulus of elasticity (MOE) and modulus of rupture (MOR) after incubation periods of 24, 32 and 90 weeks. Finally, Reticulitermes santonensis species was used for determining the termite attack resistance by non-choice screening tests, with a size sample adjustment according to EN 117 standard directives on control samples and on samples which have previously been exposed to soil bed test. Thermal modification increased the biological durability of all samples. However, high thermal modification temperature above 215 °C, represented by a wood mass loss (ML%) due to thermal degradation of 20%, was needed to reach resistance against decay comparable with the durability classes of ‘‘durable’’ or ‘‘very durable’’ in the soil bed test. The brown-rot and white-rot tests gave slightly better durability classes than the soil bed test. Whatever the heat treatment conditions are, thermally modified ash wood was not efficient against termite attack neither before nor after soft rot degradation

    Développement d’indicateurs pour la caractérisation mécanique et la durabilité des bois traités thermiquement

    No full text
    The heat treatment of wood has been a growing industry in the last decade, but its development is curbed by the lack of certifications. Heat-treated wood is a new material whose mechanical properties and durability are modified by heat transfer and chemical reactions of biopolymers. This study aims at finding non-destructive indicators that can guarantee heat-treated wood quality. The characterization of several species heated by Bois Durables de Bourgogne first enables to assess the influence of heat treatment on various samples using small specimens free from defects. This first approach shows a marked improvement of durability ensuring uses in hazard class 4, and variations of mechanical properties depending on studied reaction. Properties that appear as the most relevant in terms of certifications are bending strength and mass loss due to heat treatment. The latter is directly linked to durability owing to studies previously led by LERMAB. At this stage vibration analysis seems to be a proper way to estimate treatment intensity. In a second part ash wood is studied under four treatment intensity, between 170 and 228 °C on large specimens. This second approach confirms that vibration analysis is an appropriate indicator to estimate mass loss, but does not predict bending strength. Wood elemental composition which has been already highlighted as an indicator by other studies is not suitable for an industrial application. On the other hand the area under the treatment chart is a global measurement which is easily available and well correlated with mean values of bending strength and mass loss.Le traitement thermique du bois est une industrie qui se développe depuis une dizaine d'années, mais est freinée par l'absence de certifications. Le bois traité thermiquement est un matériau nouveau dont les propriétés mécaniques et de durabilité sont modifiées grâce aux réactions chimiques des biopolymères avec l'apport de chaleur. Cette étude vise à trouver des indicateurs non destructifs permettant d'apporter des garanties sur les performances des bois chauffés. La caractérisation de plusieurs essences chauffées chez Bois Durables de Bourgogne permet d'abord d'apprécier l'influence du traitement thermique sur des échantillons variés avec de petites éprouvettes sans défaut. Cette première campagne montre une amélioration prononcée de la durabilité permettant des usages en classe d'emploi 4, et des variations de propriétés mécaniques qui dépendent des sollicitations étudiées. Les propriétés apparaissant comme les plus importantes à estimer en vue d'une certification sont celles de la résistance en flexion et de la perte de masse due au traitement thermique, directement reliée à la durabilité grâce aux travaux du LERMAB. A ce stade, l'analyse vibratoire apparaît comme un bon indicateur de l'intensité de traitement. Dans un second temps, l'essence de frêne est étudiée à quatre intensités de traitement entre 170 et 228 °C sur des éprouvettes en dimensions d'emploi. Cette deuxième campagne permet de confirmer que l'analyse vibratoire est un bon indicateur pour la perte de masse, mais ne permet pas cette fois d'estimer la résistance en flexion. La composition élémentaire du bois mis en évidence comme indicateur par d'autres travaux ne semble pas utilisable dans un contexte industriel. En revanche, l'aire sous la courbe de traitement est une mesure globale et disponible qui est bien corrélée avec les valeurs moyennes de résistances en flexion et de pertes de masse

    Development of indicators showing mechanical characterization and durability of heat-treated wood

    No full text
    Le traitement thermique du bois est une industrie qui se développe depuis une dizaine d'années, mais est freinée par l'absence de certifications. Le bois traité thermiquement est un matériau nouveau dont les propriétés mécaniques et de durabilité sont modifiées grâce aux réactions chimiques des biopolymères avec l'apport de chaleur. Cette étude vise à trouver des indicateurs non destructifs permettant d'apporter des garanties sur les performances des bois chauffés. La caractérisation de plusieurs essences chauffées chez Bois Durables de Bourgogne permet d'abord d'apprécier l'influence du traitement thermique sur des échantillons variés avec de petites éprouvettes sans défaut. Cette première campagne montre une amélioration prononcée de la durabilité permettant des usages en classe d'emploi 4, et des variations de propriétés mécaniques qui dépendent des sollicitations étudiées. Les propriétés apparaissant comme les plus importantes à estimer en vue d'une certification sont celles de la résistance en flexion et de la perte de masse due au traitement thermique, directement reliée à la durabilité grâce aux travaux du LERMAB. A ce stade, l'analyse vibratoire apparaît comme un bon indicateur de l'intensité de traitement. Dans un second temps, l'essence de frêne est étudiée à quatre intensités de traitement entre 170 et 228 °C sur des éprouvettes en dimensions d'emploi. Cette deuxième campagne permet de confirmer que l'analyse vibratoire est un bon indicateur pour la perte de masse, mais ne permet pas cette fois d'estimer la résistance en flexion. La composition élémentaire du bois mis en évidence comme indicateur par d'autres travaux ne semble pas utilisable dans un contexte industriel. En revanche, l'aire sous la courbe de traitement est une mesure globale et disponible qui est bien corrélée avec les valeurs moyennes de résistances en flexion et de pertes de masse.The heat treatment of wood has been a growing industry in the last decade, but its development is curbed by the lack of certifications. Heat-treated wood is a new material whose mechanical properties and durability are modified by heat transfer and chemical reactions of biopolymers. This study aims at finding non-destructive indicators that can guarantee heat-treated wood quality. The characterization of several species heated by Bois Durables de Bourgogne first enables to assess the influence of heat treatment on various samples using small specimens free from defects. This first approach shows a marked improvement of durability ensuring uses in hazard class 4, and variations of mechanical properties depending on studied reaction. Properties that appear as the most relevant in terms of certifications are bending strength and mass loss due to heat treatment. The latter is directly linked to durability owing to studies previously led by LERMAB. At this stage vibration analysis seems to be a proper way to estimate treatment intensity. In a second part ash wood is studied under four treatment intensity, between 170 and 228 °C on large specimens. This second approach confirms that vibration analysis is an appropriate indicator to estimate mass loss, but does not predict bending strength. Wood elemental composition which has been already highlighted as an indicator by other studies is not suitable for an industrial application. On the other hand the area under the treatment chart is a global measurement which is easily available and well correlated with mean values of bending strength and mass loss
    corecore