8,974 research outputs found

    ELECTRON MICROSCOPIC AUTORADIOGRAPHY OF GERMINAL CENTER CELLS IN MOUSE SPLEEN

    Get PDF
    The fine structure of tritiated thymidine-labeled cells in antigen-stimulated mouse spleen germinal centers is described. In studies on the ultrastructural level, two labeled cell types found in germinal centers are observed. Large lymphocytes are characterized by their very numerous free ribosomes, a paucity of endoplasmic reticulum, relatively few mitochondria, and a poorly developed Golgi region. The nuclei are large and vesicular, and large nucleoli are present. A second labeled cell type appears to contain more mitochondria and has a higher development of the Golgi area. The nucleus contains large, numerous blocks of chromatin, indicative of a more differentiated cell type. Reticular cells, both phagocytic and non-phagocytic, were not observed to be labeled in the germinal centers

    Effects of Force Level and Hand Dominance on Bilateral Transfer of a Fine Motor Skill

    Get PDF
    Our research is about bilateral transfer, a concept in motor learning where skills learned by one limb are "transferred", allowing the opposite limb to benefit from what was learned by the first limb. Previous research into bilateral transfer has raised questions about whether specific aspects of motor coordination are or are not transferred. We wanted to see whether learning to control pinch force by the thumb and index finger is transferable, and if it is, whether the learning transfers equally from either hand. We also want to look into the effects of different force levels on the degree of transfer. We designed a task using a program that takes force levels as inputs and has the participant trace shapes on a screen. By having participants perform with one hand, then practice with the other, and finally perform again with the initial hand, we can measure transfer as the difference in performance before and after practice with the other hand.Kinesiology and Health Educatio

    The Effects of Self-Myofascial Release vs. Instrument Assisted Soft Tissue Mobilization on Performance

    Get PDF
    Please download pdf version here

    Correlation of chlorophyll, suspended matter, and related parameters of waters in the lower Chesapeake Bay area to LANDSAT-1 imagery

    Get PDF
    The author has identified the following significant results. An effort to relate water parameters of the lower Chesapeake Bay area to multispectral scanner images of LANDSAT 1 has shown that some spectral bands can be correlated to water parameters, and has demonstrated the feasibility of synoptic mapping of estuaries by satellite. Bands 5 and 6 were shown to be useful for monitoring total particles. Band 5 showed high correlation with suspended sediment concentration. Attenuation coefficients monitored continuously by ship along three baselines were cross correlated with radiance values on three days. Improved correlations resulted when tidal conditions were taken into consideration. A contouring program was developed to display sediment variation in the lower Chesapeake Bay from the MSS bands

    Cryogenic Propulsion Stage (CPS) Configuration in Support of NASA's Multiple Design Reference Missions (DRMs)

    Get PDF
    In support of the National Aeronautics and Space Administration's (NASA) Human Exploration and Operations Mission Directorate (HEOMD), the Space Launch System (SLS) is being designed for safe, affordable, and sustainable human and scientific exploration missions beyond Earth's or-bit (BEO). The SLS Team is tasked with developing a system capable of safely and repeatedly lofting a new fleet of spaceflight vehicles beyond Earth orbit. The Cryogenic Propulsion Stage (CPS) is a key enabler for evolving the SLS capability for BEO missions. This paper reports on the methodology and initial recommendations relative to the CPS, giving a brief retrospective of early studies on this promising propulsion hardware. This paper provides an overview of the requirements development and CPS configuration in support of NASA's multiple Design Reference Missions (DRMs)

    Optically trapped atom interferometry using the clock transition of large Rb-87 Bose-Einstein condensates

    Full text link
    We present a Ramsey-type atom interferometer operating with an optically trapped sample of 10^6 Bose-condensed Rb-87 atoms. The optical trap allows us to couple the |F =1, mF =0>\rightarrow |F =2, mF =0> clock states using a single photon 6.8GHz microwave transition, while state selective readout is achieved with absorption imaging. Interference fringes with contrast approaching 100% are observed for short evolution times. We analyse the process of absorption imaging and show that it is possible to observe atom number variance directly, with a signal-to-noise ratio ten times better than the atomic projection noise limit on 10^6 condensate atoms. We discuss the technical and fundamental noise sources that limit our current system, and outline the improvements that can be made. Our results indicate that, with further experimental refinements, it will be possible to produce and measure the output of a sub-shot-noise limited, large atom number BEC-based interferometer. In an addendum to the original paper, we attribute our inability to observe quantum projection noise to the stability of our microwave oscillator and background magnetic field. Numerical simulations of the Gross-Pitaevskii equations for our system show that dephasing due to spatial dynamics driven by interparticle interactions account for much of the observed decay in fringe visibility at long interrogation times. The simulations show good agreement with the experimental data when additional technical decoherence is accounted for, and suggest that the clock states are indeed immiscible. With smaller samples of 5 \times 10^4 atoms, we observe a coherence time of {\tau} = (1.0+0.5-0.3) s.Comment: 22 pages, 6 figures Addendum: 11 pages, 6 figure

    Feshbach resonances in the 6Li-40K Fermi-Fermi mixture: Elastic versus inelastic interactions

    Full text link
    We present a detailed theoretical and experimental study of Feshbach resonances in the 6Li-40K mixture. Particular attention is given to the inelastic scattering properties, which have not been considered before. As an important example, we thoroughly investigate both elastic and inelastic scattering properties of a resonance that occurs near 155 G. Our theoretical predictions based on a coupled channels calculation are found in excellent agreement with the experimental results. We also present theoretical results on the molecular state that underlies the 155G resonance, in particular concerning its lifetime against spontaneous dissociation. We then present a survey of resonances in the system, fully characterizing the corresponding elastic and inelastic scattering properties. This provides the essential information to identify optimum resonances for applications relying on interaction control in this Fermi-Fermi mixture.Comment: Submitted to EPJD, EuroQUAM special issues "Cold Quantum Matter - Achievements and Prospects", v2 with updated calibration of magnetic field (+4mG correction) and updated figures 4 and

    Reverse Doppler effect in backward spin waves scattered on acoustic waves

    Full text link
    We report on the observation of reverse Doppler effect in backward spin waves reflected off of surface acoustic waves. The spin waves are excited in a yttrium iron garnet (YIG) film. Simultaneously, acoustic waves are also generated. The strain induced by the acoustic waves in the magnetostrictive YIG film results in the periodic modulation of the magnetic anisotropy in the film. Thus, in effect, a travelling Bragg grating for the spin waves is produced. The backward spin waves reflecting off of this grating exhibit a reverse Doppler shift: shifting down rather than up in frequency when reflecting off of an approaching acoustic wave. Similarly, the spin waves are shifted up in frequency when reflecting from receding acoustic waves.Comment: 4 pages, 3 figure

    Shiga toxin 1 elicits diverse biologic responses in mesangial cells

    Get PDF
    Shiga toxin 1 elicits diverse biologic responses in mesangial cells.BackgroundShiga toxin 1 (Stx1) is a causative agent in hemolytic uremic syndrome (HUS). Its receptor, the glycosphingolipid globotriaosylceramide (Gb3), is expressed on cultured human endothelial and mesangial cells. Mesangial cell injury in HUS ranges from mild cellular edema to severe mesangiolysis and eventual glomerulosclerosis. We hypothesized that, in addition to endothelial cells, mesangial cells are targets of Stx1.MethodsHuman mesangial cells were exposed to Stx1. Protein synthesis was measured using [35S]-methionine/cysteine. Cell viability was measured as the lysosomal uptake of Neutral Red. Monocyte chemotactic peptide (MCP-1) mRNA and protein were analyzed by Northern blotting and ELISA.ResultsStx1 (0.25 to 2500ng/ml) resulted in a dose-dependent inhibition of protein synthesis. This effect of Stx1 was potentiated by preincubation of the cells with interleukin-1α (IL-1α; 2ng/ml) or tumor necrosis-α (TNF-α; 500 U/ml). Stx1 had little effect on mesangial cell viability during the first 24hours of exposure to Stx1. However, prolonged incubation with Stx1 for 48 and 72hours resulted in a 68% and 80% decrease in cell-viability, respectively. Stx1 elicited a dose and time dependent increase in the levels of MCP-1 mRNA, an effect that was potentiated by preincubation with IL-1α.ConclusionThese data indicate that mesangial cells are susceptible to the effects of Stx1 in vitro. Stx1 exerts a spectrum of biologic effects on mesangial cells ranging from activation of chemokine genes to a lethal toxic injury. Immunoinflammatory cytokines potentiate the effects of Stx1. Thus, glomerular pathology in HUS may also result from a direct effect of Stx1 on mesangial cells
    corecore