878 research outputs found
Systematic review of fatty acid composition of human milk from mothers of preterm compared to full-term infants
Background: Fatty acid composition of human milk serves as guidance for the composition of infant formulae. The aim of the study was to systematically review data on the fatty acid composition of human milk of mothers of preterm compared to full-term infants. Methods: An electronic literature search was performed in English (Medline and Medscape) and German (SpringerLink) databases and via the Google utility. Fatty acid compositional data for preterm and fullterm human milk were converted to differences between means and 95% confidence intervals. Results: We identified five relevant studies publishing direct comparison of fatty acid composition of preterm versus full-term human milk. There were no significant differences between the values of the principal saturated and monounsaturated fatty acids. In three independent studies covering three different time points of lactation, however, docosahexaenoic acid (DHA) values were significantly higher in milk of mothers of preterm as compared to those of full-term infants, with an extent of difference considered nutritionally relevant. Conclusion: Higher DHA values in preterm than in full-term human milk underlines the importance of using own mother's milk for feeding preterm babies and raises the question whether DHA contents in preterm formulae should be higher than in formulae for full-term infants. Copyright (c) 2008 S. Karger AG, Basel
A visual and curatorial approach to clinical variant prioritization and disease gene discovery in genome-wide diagnostics
Background: Genome-wide data are increasingly important in the clinical evaluation of human disease. However, the large number of variants observed in individual patients challenges the efficiency and accuracy of diagnostic review. Recent work has shown that systematic integration of clinical phenotype data with genotype information can improve diagnostic workflows and prioritization of filtered rare variants. We have developed visually interactive, analytically transparent analysis software that leverages existing disease catalogs, such as the Online Mendelian Inheritance in Man database (OMIM) and the Human Phenotype Ontology (HPO), to integrate patient phenotype and variant data into ranked diagnostic alternatives. Methods: Our tool, “OMIM Explorer” (http://www.omimexplorer.com), extends the biomedical application of semantic similarity methods beyond those reported in previous studies. The tool also provides a simple interface for translating free-text clinical notes into HPO terms, enabling clinical providers and geneticists to contribute phenotypes to the diagnostic process. The visual approach uses semantic similarity with multidimensional scaling to collapse high-dimensional phenotype and genotype data from an individual into a graphical format that contextualizes the patient within a low-dimensional disease map. The map proposes a differential diagnosis and algorithmically suggests potential alternatives for phenotype queries—in essence, generating a computationally assisted differential diagnosis informed by the individual’s personal genome. Visual interactivity allows the user to filter and update variant rankings by interacting with intermediate results. The tool also implements an adaptive approach for disease gene discovery based on patient phenotypes. Results: We retrospectively analyzed pilot cohort data from the Baylor Miraca Genetics Laboratory, demonstrating performance of the tool and workflow in the re-analysis of clinical exomes. Our tool assigned to clinically reported variants a median rank of 2, placing causal variants in the top 1 % of filtered candidates across the 47 cohort cases with reported molecular diagnoses of exome variants in OMIM Morbidmap genes. Our tool outperformed Phen-Gen, eXtasy, PhenIX, PHIVE, and hiPHIVE in the prioritization of these clinically reported variants. Conclusions: Our integrative paradigm can improve efficiency and, potentially, the quality of genomic medicine by more effectively utilizing available phenotype information, catalog data, and genomic knowledge
Deriving a mutation index of carcinogenicity using protein structure and protein interfaces
With the advent of Next Generation Sequencing the identification of mutations in the genomes of healthy and diseased tissues has become commonplace. While much progress has been made to elucidate the aetiology of disease processes in cancer, the contributions to disease that many individual mutations make remain to be characterised and their downstream consequences on cancer phenotypes remain to be understood. Missense mutations commonly occur in cancers and their consequences remain challenging to predict. However, this knowledge is becoming more vital, for both assessing disease progression and for stratifying drug treatment regimes. Coupled with structural data, comprehensive genomic databases of mutations such as the 1000 Genomes project and COSMIC give an opportunity to investigate general principles of how cancer mutations disrupt proteins and their interactions at the molecular and network level. We describe a comprehensive comparison of cancer and neutral missense mutations; by combining features derived from structural and interface properties we have developed a carcinogenicity predictor, InCa (Index of Carcinogenicity). Upon comparison with other methods, we observe that InCa can predict mutations that might not be detected by other methods. We also discuss general limitations shared by all predictors that attempt to predict driver mutations and discuss how this could impact high-throughput predictions. A web interface to a server implementation is publicly available at http://inca.icr.ac.uk/
Mapping gene associations in human mitochondria using clinical disease phenotypes
Nuclear genes encode most mitochondrial proteins, and their mutations cause diverse and debilitating clinical disorders. To date, 1,200 of these mitochondrial genes have been recorded, while no standardized catalog exists of the associated clinical phenotypes. Such a catalog would be useful to develop methods to analyze human phenotypic data, to determine genotype-phenotype relations among many genes and diseases, and to support the clinical diagnosis of mitochondrial disorders. Here we establish a clinical phenotype catalog of 174 mitochondrial disease genes and study associations of diseases and genes. Phenotypic features such as clinical signs and symptoms were manually annotated from full-text medical articles and classified based on the hierarchical MeSH ontology. This classification of phenotypic features of each gene allowed for the comparison of diseases between different genes. In turn, we were then able to measure the phenotypic associations of disease genes for which we calculated a quantitative value that is based on their shared phenotypic features. The results showed that genes sharing more similar phenotypes have a stronger tendency for functional interactions, proving the usefulness of phenotype similarity values in disease gene network analysis. We then constructed a functional network of mitochondrial genes and discovered a higher connectivity for non-disease than for disease genes, and a tendency of disease genes to interact with each other. Utilizing these differences, we propose 168 candidate genes that resemble the characteristic interaction patterns of mitochondrial disease genes. Through their network associations, the candidates are further prioritized for the study of specific disorders such as optic neuropathies and Parkinson disease. Most mitochondrial disease phenotypes involve several clinical categories including neurologic, metabolic, and gastrointestinal disorders, which might indicate the effects of gene defects within the mitochondrial system. The accompanying knowledgebase (http://www.mitophenome.org/) supports the study of clinical diseases and associated genes
Mapping genetic variations to three- dimensional protein structures to enhance variant interpretation: a proposed framework
The translation of personal genomics to precision medicine depends on the accurate interpretation of the multitude of genetic variants observed for each individual. However, even when genetic variants are predicted to modify a protein, their functional implications may be unclear. Many diseases are caused by genetic variants affecting important protein features, such as enzyme active sites or interaction interfaces. The scientific community has catalogued millions of genetic variants in genomic databases and thousands of protein structures in the Protein Data Bank. Mapping mutations onto three-dimensional (3D) structures enables atomic-level analyses of protein positions that may be important for the stability or formation of interactions; these may explain the effect of mutations and in some cases even open a path for targeted drug development. To accelerate progress in the integration of these data types, we held a two-day Gene Variation to 3D (GVto3D) workshop to report on the latest advances and to discuss unmet needs. The overarching goal of the workshop was to address the question: what can be done together as a community to advance the integration of genetic variants and 3D protein structures that could not be done by a single investigator or laboratory? Here we describe the workshop outcomes, review the state of the field, and propose the development of a framework with which to promote progress in this arena. The framework will include a set of standard formats, common ontologies, a common application programming interface to enable interoperation of the resources, and a Tool Registry to make it easy to find and apply the tools to specific analysis problems. Interoperability will enable integration of diverse data sources and tools and collaborative development of variant effect prediction methods
Exposure to Phthalates in Neonatal Intensive Care Unit Infants: Urinary Concentrations of Monoesters and Oxidative Metabolites
OBJECTIVE: We previously demonstrated that among 54 infants in neonatal intensive care units, exposure to polyvinyl chloride plastic medical devices containing the plasticizer di(2-ethylhexyl) phthalate (DEHP) is associated with urinary concentrations of mono(2-ethylhexyl) phthalate (MEHP), a DEHP metabolite. In this follow-up report, we studied the neonates’ exposure to DEHP-containing devices in relation to urinary concentrations of two other DEHP metabolites, and to urinary concentrations of metabolites of dibutyl phthalate (DBP) and benzylbutyl phthalate (BzBP), phthalates found in construction materials and personal care products. MEASUREMENTS: A priori, we classified the intensiveness of these 54 infants’ exposure to DEHP-containing medical products. We measured three metabolites of DEHP in infants’ urine: MEHP and two of its oxidative metabolites, mono(2-ethyl-5-hydroxylhexyl) phthalate (MEHHP) and mono(2-ethyl-5-oxohexyl) phthalate (MEOHP). We also measured monobutyl phthalate (MBP), a metabolite of DBP, and monobenzyl phthalate (MBzP), a metabolite of BzBP. RESULTS: Intensiveness of DEHP-containing product use was monotonically associated with all three DEHP metabolites. Urinary concentrations of MEHHP and MEOHP among infants in the high-DEHP-intensiveness group were 13–14 times the concentrations among infants in the low-intensiveness group (p ≤ 0.007). Concentrations of MBP were somewhat higher in the medium-and high-DEHP-intensiveness group; MBzP did not vary by product use group. Incorporating all phthalate data into a structural equation model confirmed the specific monotonic association between intensiveness of product use and biologic measures of DEHP. CONCLUSION: Inclusion of the oxidative metabolites MEHHP and MEOHP strengthened the association between intensiveness of product use and biologic indices of DEHP exposure over that observed with MEHP alone
High-throughput site-directed mutagenesis
Protein engineering has an array of uses: whether you are studying a disease mutation, removing undesirable sequences, adding stabilizing mutations for structural purposes, or simply dissecting protein function. Protein engineering is almost exclusively performed using site-directed mutagenesis (SDM) as this provides targeted modification of specific amino acids, as well as the option of rewriting the native sequence to include or exclude certain regions. Despite its widespread use, SDM has often proved to be a bottleneck, requiring precision manipulation on a sample-by-sample basis to make it work. When dealing with large volumes of samples it is not possible to use such a low-throughput approach. Here we describe a high-throughput (HTP) method for SDM, optimized and used by the Structural Genomics Consortium (SGC) to complement structural studies
VarySysDB: a human genetic polymorphism database based on all H-InvDB transcripts
Creation of a vast variety of proteins is accomplished by genetic variation and a variety of alternative splicing transcripts. Currently, however, the abundant available data on genetic variation and the transcriptome are stored independently and in a dispersed fashion. In order to provide a research resource regarding the effects of human genetic polymorphism on various transcripts, we developed VarySysDB, a genetic polymorphism database based on 187 156 extensively annotated matured mRNA transcripts from 36 073 loci provided by H-InvDB. VarySysDB offers information encompassing published human genetic polymorphisms for each of these transcripts separately. This allows comparisons of effects derived from a polymorphism on different transcripts. The published information we analyzed includes single nucleotide polymorphisms and deletion–insertion polymorphisms from dbSNP, copy number variations from Database of Genomic Variants, short tandem repeats and single amino acid repeats from H-InvDB and linkage disequilibrium regions from D-HaploDB. The information can be searched and retrieved by features, functions and effects of polymorphisms, as well as by keywords. VarySysDB combines two kinds of viewers, GBrowse and Sequence View, to facilitate understanding of the positional relationship among polymorphisms, genome, transcripts, loci and functional domains. We expect that VarySysDB will yield useful information on polymorphisms affecting gene expression and phenotypes. VarySysDB is available at http://h-invitational.jp/varygene/
The Degradome database: mammalian proteases and diseases of proteolysis
The degradome is defined as the complete set of proteases present in an organism. The recent availability of whole genomic sequences from multiple organisms has led us to predict the contents of the degradomes of several mammalian species. To ensure the fidelity of these predictions, our methods have included manual curation of individual sequences and, when necessary, direct cloning and sequencing experiments. The results of these studies in human, chimpanzee, mouse and rat have been incorporated into the Degradome database, which can be accessed through a web interface at http://degradome.uniovi.es. The annotations about each individual protease can be retrieved by browsing catalytic classes and families or by searching specific terms. This web site also provides detailed information about genetic diseases of proteolysis, a growing field of great importance for multiple users. Finally, the user can find additional information about protease structures, protease inhibitors, ancillary domains of proteases and differences between mammalian degradomes
- …
