213 research outputs found
Actuation of Micro-Optomechanical Systems Via Cavity-Enhanced Optical Dipole Forces
We demonstrate a new type of optomechanical system employing a movable,
micron-scale waveguide evanescently-coupled to a high-Q optical microresonator.
Micron-scale displacements of the waveguide are observed for
milliwatt(mW)-level optical input powers. Measurement of the spatial variation
of the force on the waveguide indicates that it arises from a cavity-enhanced
optical dipole force due to the stored optical field of the resonator. This
force is used to realize an all-optical tunable filter operating with sub-mW
control power. A theoretical model of the system shows the maximum achievable
force to be independent of the intrinsic Q of the optical resonator and to
scale inversely with the cavity mode volume, suggesting that such forces may
become even more effective as devices approach the nanoscale.Comment: 4 pages, 5 figures. High resolution version available at
(http://copilot.caltech.edu/publications/CEODF_hires.pdf). For associated
movie, see (http://copilot.caltech.edu/research/optical_forces/index.htm
Microwave amplification with nanomechanical resonators
Sensitive measurement of electrical signals is at the heart of modern science
and technology. According to quantum mechanics, any detector or amplifier is
required to add a certain amount of noise to the signal, equaling at best the
energy of quantum fluctuations. The quantum limit of added noise has nearly
been reached with superconducting devices which take advantage of
nonlinearities in Josephson junctions. Here, we introduce a new paradigm of
amplification of microwave signals with the help of a mechanical oscillator. By
relying on the radiation pressure force on a nanomechanical resonator, we
provide an experimental demonstration and an analytical description of how the
injection of microwaves induces coherent stimulated emission and signal
amplification. This scheme, based on two linear oscillators, has the advantage
of being conceptually and practically simpler than the Josephson junction
devices, and, at the same time, has a high potential to reach quantum limited
operation. With a measured signal amplification of 25 decibels and the addition
of 20 quanta of noise, we anticipate near quantum-limited mechanical microwave
amplification is feasible in various applications involving integrated
electrical circuits.Comment: Main text + supplementary information. 14 pages, 3 figures (main
text), 18 pages, 6 figures (supplementary information
Simulating eddy current sensor outputs for blade tip timing
Blade tip timing is a contactless method used to monitor the vibration of blades in rotating machinery. Blade vibration and clearance are important diagnostic features for condition monitoring, including the detection of blade cracks. Eddy current sensors are a practical choice for blade tip timing and have been used extensively. As the data requirements from the timing measurement become more stringent and the systems become more complicated, including the use of multiple sensors, the ability to fully understand and optimize the measurement system becomes more important. This requires detailed modeling of eddy current sensors in the blade tip timing application; the current approaches often rely on experimental trials. Existing simulations for eddy current sensors have not considered the particular case of a blade rotating past the sensor. Hence, the novel aspect of this article is the development of a detailed quasi-static finite element model of the electro-magnetic field to simulate the integrated measured output of the sensor. This model is demonstrated by simulating the effect of tip clearance, blade geometry, and blade velocity on the output of the eddy current sensor. This allows an understanding of the sources of error in the blade time of arrival estimate and hence insight into the accuracy of the blade vibration measurement
Stokes solitons in optical microcavities
Solitons are wave packets that resist dispersion through a self-induced potential well. They are studied in many fields, but are especially well known in optics on account of the relative ease of their formation and control in optical fibre waveguides. Besides their many interesting properties, solitons are important to optical continuum generation, in mode-locked lasers, and have been considered as a natural way to convey data over great distances. Recently, solitons have been realized in microcavities, thereby bringing the power of microfabrication methods to future applications. This work reports a soliton not previously observed in optical systems, the Stokes soliton. The Stokes soliton forms and regenerates by optimizing its Raman interaction in space and time within an optical potential well shared with another soliton. The Stokes and the initial soliton belong to distinct transverse mode families and benefit from a form of soliton trapping that is new to microcavities and soliton lasers in general. The discovery of a new optical soliton can impact work in other areas of photonics, including nonlinear optics and spectroscopy
Phase preserving amplification near the quantum limit with a Josephson Ring Modulator
Recent progress in solid state quantum information processing has stimulated
the search for ultra-low-noise amplifiers and frequency converters in the
microwave frequency range, which could attain the ultimate limit imposed by
quantum mechanics. In this article, we report the first realization of an
intrinsically phase-preserving, non-degenerate superconducting parametric
amplifier, a so far missing component. It is based on the Josephson ring
modulator, which consists of four junctions in a Wheatstone bridge
configuration. The device symmetry greatly enhances the purity of the
amplification process and simplifies both its operation and analysis. The
measured characteristics of the amplifier in terms of gain and bandwidth are in
good agreement with analytical predictions. Using a newly developed noise
source, we also show that our device operates within a factor of three of the
quantum limit. This development opens new applications in the area of quantum
analog signal processing
Active dielectric antenna on chip for spatial light modulation
Integrated photonic resonators are widely used to manipulate light propagation in an evanescently-coupled
waveguide. While the evanescent coupling scheme works well for planar optical systems that are naturally
waveguide based, many optical applications are free-space based, such as imaging, display, holographics,
metrology and remote sensing. Here we demonstrate an active dielectric antenna as the interface device that
allows the large-scale integration capability of silicon photonics to serve the free-space applications. We
show a novel perturbation-base diffractive coupling scheme that allows a high-Q planer resonator to directly
interact with and manipulate free-space waves. Using a silicon-based photonic crystal cavity whose
resonance can be rapidly tuned with a p-i-n junction, a compact spatial light modulator with an extinction
ratio of 9.5 dB and a modulation speed of 150 MHz is demonstrated. Method to improve the modulation
speed is discussed.Air Force Office of Scientific Research (AFOSR grant FA9550-12-1-0261
Coherent master equation for laser modelocking
Modelocked lasers constitute the fundamental source of optically-coherent ultrashort-pulsed radiation, with huge impact in science and technology. Their modeling largely rests on the master equation (ME) approach introduced in 1975 by Hermann A. Haus. However, that description fails when the medium dynamics is fast and, ultimately, when light-matter quantum coherence is relevant. Here we set a rigorous and general ME framework, the coherent ME (CME), that overcomes both limitations. The CME predicts strong deviations from Haus ME, which we substantiate through an amplitude-modulated semiconductor laser experiment. Accounting for coherent effects, like the Risken-Nummedal-Graham-Haken multimode instability, we envisage the usefulness of the CME for describing self-modelocking and spontaneous frequency comb formation in quantum-cascade and quantum-dot lasers. Furthermore, the CME paves the way for exploiting the rich phenomenology of coherent effects in laser design, which has been hampered so far by the lack of a coherent ME formalism
Yb- and Er-doped fiber laser Q-switched with an optically uniform, broadband WS2 saturable absorber.
We demonstrate a ytterbium (Yb) and an erbium (Er)-doped fiber laser Q-switched by a solution processed, optically uniform, few-layer tungsten disulfide saturable absorber (WS2-SA). Nonlinear optical absorption of the WS2-SA in the sub-bandgap region, attributed to the edge-induced states, is characterized by 3.1% and 4.9% modulation depths with 1.38 and 3.83 MW/cm(2) saturation intensities at 1030 and 1558 nm, respectively. By integrating the optically uniform WS2-SA in the Yb- and Er-doped laser cavities, we obtain self-starting Q-switched pulses with microsecond duration and kilohertz repetition rates at 1030 and 1558 nm. Our work demonstrates broadband sub-bandgap saturable absorption of a single, solution processed WS2-SA, providing new potential efficacy for WS2 in ultrafast photonic applications.The authors thank E. J. R. Kelleher for valuable discussions. MZ acknowledges support from Beihang University, China, through a Zhuoyue Bairen Program and TH from the Royal Academy of Engineering through a fellowship (Graphlex). This work at Beihang University was supported by 973 Program (2012CB315601), NSFC (61221061/61435002) and the Fundamental Research Funds for the Central Universities.This is the final version of the article. It was first available from NPG via http://dx.doi.org/10.1038/srep1748
Mathematical modelling of clostridial acetone-butanol-ethanol fermentation
Clostridial acetone-butanol-ethanol (ABE) fermentation features a remarkable shift in the cellular metabolic activity from acid formation, acidogenesis, to the production of industrial-relevant solvents, solventogensis. In recent decades, mathematical models have been employed to elucidate the complex interlinked regulation and conditions that determine these two distinct metabolic states and govern the transition between them. In this review, we discuss these models with a focus on the mechanisms controlling intra- and extracellular changes between acidogenesis and solventogenesis. In particular, we critically evaluate underlying model assumptions and predictions in the light of current experimental knowledge. Towards this end, we briefly introduce key ideas and assumptions applied in the discussed modelling approaches, but waive a comprehensive mathematical presentation. We distinguish between structural and dynamical models, which will be discussed in their chronological order to illustrate how new biological information facilitates the ‘evolution’ of mathematical models. Mathematical models and their analysis have significantly contributed to our knowledge of ABE fermentation and the underlying regulatory network which spans all levels of biological organization. However, the ties between the different levels of cellular regulation are not well understood. Furthermore, contradictory experimental and theoretical results challenge our current notion of ABE metabolic network structure. Thus, clostridial ABE fermentation still poses theoretical as well as experimental challenges which are best approached in close collaboration between modellers and experimentalists
Stimulated optomechanical excitation of surface acoustic waves in a microdevice
Stimulated Brillouin interaction between sound and light, known to be the
strongest optical nonlinearity common to all amorphous and crystalline
dielectrics, has been widely studied in fibers and bulk materials but rarely in
optical microresonators. The possibility of experimentally extending this
principle to excite mechanical resonances in photonic microsystems, for sensing
and frequency reference applications, has remained largely unexplored. The
challenge lies in the fact that microresonators inherently have large free
spectral range, while the phase matching considerations for the Brillouin
process require optical modes of nearby frequencies but with different
wavevectors. We rely on high-order transverse optical modes to relax this
limitation. Here we report on the experimental excitation of mechanical
resonances ranging from 49 to 1400 MHz by using forward Brillouin scattering.
These natural mechanical resonances are excited in ~100 um silica microspheres,
and are of a surface-acoustic whispering-gallery type
- …
