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Abstract Clostridial acetone-butanol-ethanol (ABE) fermen-
tation features a remarkable shift in the cellular metabolic
activity from acid formation, acidogenesis, to the production
of industrial-relevant solvents, solventogensis. In recent de-
cades, mathematical models have been employed to elucidate
the complex interlinked regulation and conditions that deter-
mine these two distinct metabolic states and govern the tran-
sition between them. In this review, we discuss these models
with a focus on the mechanisms controlling intra- and extra-
cellular changes between acidogenesis and solventogenesis.
In particular, we critically evaluate underlying model assump-
tions and predictions in the light of current experimental
knowledge. Towards this end, we briefly introduce key ideas
and assumptions applied in the discussed modelling ap-
proaches, but waive a comprehensive mathematical presenta-
tion. We distinguish between structural and dynamical
models, which will be discussed in their chronological order
to illustrate how new biological information facilitates the
‘evolution’ of mathematical models. Mathematical models
and their analysis have significantly contributed to our knowl-
edge of ABE fermentation and the underlying regulatory net-
work which spans all levels of biological organization.
However, the ties between the different levels of cellular reg-
ulation are not well understood. Furthermore, contradictory
experimental and theoretical results challenge our current no-
tion of ABE metabolic network structure. Thus, clostridial
ABE fermentation still poses theoretical as well as

experimental challenges which are best approached in close
collaboration between modellers and experimentalists.

Keywords Clostridial ABE fermentation . pH-induced
metabolic shift . Mathematical modelling . Structural and
dynamical models . Batch and continuous culture

Introduction

Acetate-butanol-ethanol (ABE) fermentation carried out by
saccharolytic clostridia has attracted academic and industrial
interest for over a hundred years. After the initial discovery of
butanol formation by Louis Pasteur in 1862 (Pasteur 1862)
and the subsequent discovery of acetone production by
Chaim Weizmann in 1919 (Weizmann 1919), it quickly grew
to commercial scale and became one of the largest industrial
bioprocesses of the twentieth century. However, when petro-
chemical synthesis of solvents became economical in the
1950s and early 1960s (Jones and Woods 1986), industrial
ABE plants in Western countries were closed down. The re-
maining facilities in South Africa and the Soviet Union termi-
nated in the 1980s (Zverlov et al. 2006), and the last facility in
China finally closed in 2004 (Chiao and Sun 2007). In the last
decade, concerns over limited fossil resources and environ-
mental impacts of petrol-based technologies have initiated
the return of clostridial ABE fermentation to academic and
industrial focus (Green 2011).

Natural ABE fermentation is exclusively performed by
solventogenic clostridia. These strictly Gram-positive endo-
spore-forming anaerobes possess a fermentative metabolism
and utilize a wide variety of sugars, oligosaccharides and
polysaccharides. Typically, their fermentation metabolism is
characterized by two phases, exhibiting a distinct shift in the
product spectrum. During acidogenesis, the main (liquid)
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products are acetic acid and butyric acid, whereas neutral sol-
vents, i.e. butanol, acetone and ethanol, are the main fermen-
tation products during the solventogenic phase. In both
phases, hydrogen and carbon dioxide are formed as by-
products.

Over the years, several solventogenic species have been
isolated and characterized which differ in their substrate
preferences, fermentation product profiles and other relevant
properties. Common to all of them is the production of butanol
and ethanol. In addition, Clostridium acetobutylicum (Jones
and Woods 1986), Clostridium saccharobutylicum and
Clostridium saccharoperbutylacetonicum (Keis et al. 2001)
form acetone, whereas strains of Clostridium beijerinckii
either produce acetone or reduce it further to isopropanol
and Clostridium aurantibutyricum combines the formation
of the two solvents (George et al. 1983). These two products
are missing in Clostridium tetanomorphum (Gottwald et al.
1984). Similarly, Clostridium puniceum produces mainly
butanol and comparatively little acetone and ethanol (Holt
et al. 1988). Of the species mentioned here, only the first four
have been used in industrial ABE fermentation (Shaheen et al.
2000).

Solventogenic clostridia also differ in genome size and or-
ganization. For instance, the ABE model organism
C. acetobutylicum encodes several important solvent-
forming enzymes on a large megaplasmid, pSOL1 (Nölling
et al. 2001), whereas this information is located on the main
chromosome in other solventogenic clostridia.

In this review, we summarize past and present attempts to
model clostridial ABE fermentation. In contrast to other recent
reviews on the subject (Mayank et al. 2013; Dash et al. 2016),
we focus on the underlying biological, physicochemical and
mathematical assumptions behind the proposed models,
whether or not these are supported by experimental findings.
Specifically, we restrict ourselves to ABE fermentation me-
tabolism and the dynamic transition between acidogenic and
solventogenic states although, undoubtedly, modelling-
guided improvements in process design, including among
others immobilized cells (Schoutens et al. 1986; Park et al.
1989; Badr et al. 2001; Vichuviwat et al. 2014), sophisticated
bioreactors (Li et al. 2011b; Dolejš et al. 2014), product
recovery (Xue et al. 2014) and life cycle assessments (Wu
et al. 2008; Napoli et al. 2012), will all be crucial for a suc-
cessful comeback of large-scale commercial applications.
Furthermore, recent progress in genetic engineering of the
ABE network will only be considered if the generated mutants
have particular importance for a given model’s assumptions/
predictions. We would like to emphasize that recent improve-
ments in targeted mutagenesis of clostridia, e.g. using
ClosTron (Cooksley et al. 2012; Kuehne and Minton 2012;
Al-Hinai et al. 2012; Lütke-Eversloh 2014) or CRISPR (Wang
et al. 2015; Li et al. 2016), offer new perspectives for model-
ling ABE fermentation.

We first introduce the relevant physiological basis of ABE
fermentation. This is followed by an overview of the different
modelling approaches employed. (We include only a minimal
number of mathematical equations.) We then summarize and
discuss published structural and dynamic models in their chro-
nological order. Finally, we address open and emerging ques-
tions regarding experimental and theoretical investigations.

Acetone-butanol-ethanol fermentation in solventogenic
clostridia

Two different setups are widely used to investigate the revers-
ible shift from acidogenesis to solventogenesis in both exper-
iment and theory: batch culture and continuous culture.

During a standard batch fermentation as shown in Fig. 1a,
the metabolic shift from acidogenesis to solventogenesis
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Fig. 1 Traditional view of the changes in optical density, pH and product
concentrations during a standard batch culture experiment (a) (Bahl
et al.1982b) and forward shift experiment using a phosphate-limited
continuous culture (b) (Millat et al. 2013a). Inoculation and initial growth
phases not shown
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appears to be linked to the growth phase (Jones and Woods
1986). During early and mid-exponential phase, the cells pro-
duce acids to generate maximum ATP per substrate, which
results in a pH decrease of the culture medium. As cell density
increases further and the culture enters stationary phase, the
metabolic shift to solvent formation is initiated. While sugar
consumption continues, the cells start to re-assimilate the pre-
viously excreted acids resulting in an increase of the culture
pH (Jones and Woods 1986). Additionally, the complex pro-
gram of endospore formation is initiated (Alsaker and
Papoutsakis 2005). From this observed temporal association
of stationary phase, solvent formation and early stages of spor-
ulation, one might conclude that solventogenesis is associated
with non-growing cells and the onset of sporulation (see e.g.
Schuster et al. 1998), but it is more likely that these processes
share regulatory mechanisms (George et al. 1983; Ravagnani
et al. 2000; Gottschal and Morris 1981; Harris et al. 2002)
which are co-ordinately controlled by a master regulator such
as Spo0A (Alsaker et al. 2004; Woolley and Morris 1990).
Indeed, for some species and strains, solvent formation in
batch culture has been reported to occur before their transition
to stationary phase (Holt et al. 1988).

In continuous cultures under phosphate, nitrogen or iron
limitation (Bahl et al. 1982a, b; Junelles et al. 1988), the
reversible shift from acidogenesis to solventogenesis can
be triggered by a change in external pH (Fig. 1b). For
phosphate-limited chemostat cultures of C. acetobutylicum
ATCC 824, the pH limits for this phase shift have recently
been established (Millat et al. 2013b). A systematic variation
of the external pH revealed that for pH >5.2, the cells
favoured the formation of acids and, thus, established an
acidogenic culture, whereas the production of solvents dom-
inated for pH <5.1 which thus corresponded to the
solventogenic phase.

Furthermore, experimental evidence suggests that nutri-
tional composition (Robinson 1922; Bahl et al. 1986) and
intracellular ATP and NAD(P)H pools (Girbal and Soucaille
1994; Wietzke and Bahl 2012) have a profound impact on
product spectrum and temporal behaviour of ABE fermenta-
tion. Experiments indicate that the state of reduction of sub-
strates and the redox potential of the medium are crucial to
these findings (Kim et al. 1988) but also might be influenced
externally using cell recycle (Hüsemann and Papoutsakis
1989) or by providing artificial electron donors (Kim and
Kim 1988; Girbal et al. 1995).

Contradictory observations have been made for batch and
chemostat setups (see Jang et al. 2014; Janssen et al. 2010).
Similarly, continuous cultivation of C. acetobutylicum mu-
tants defective in key fermentation genes has revealed signif-
icant phenotypic differences in comparison with the same mu-
tants in batch culture (Hönicke et al. 2014), suggesting that the
ABE fermentation network is more complex than previously
thought and our understanding of the shift and the two

metabolic states as well as the regulatory mechanisms used
to achieve them remains incomplete.

Solventogenic clostridia are unable to maintain a constant
intracellular pH, and as a result, changes in the external pH
have a direct impact on the intracellular biochemical and bio-
physical conditions. Under normal physiological conditions,
the transmembrane pH gradient is kept constant with an ap-
proximate difference of one pH unit (Gottwald and Gottschalk
1985; Huang et al. 1985). Hence, mathematical models of
clostridial ABE fermentation should consider pH-dependent
factors as important variables.

The principal metabolic network of the ABE fermentation
(see Fig. 2), is well understood (Jones and Woods 1986). An
extensive summary of the involved enzymes, their biochemi-
cal properties and proposed reaction mechanism can be found
in Gheshlaghi et al. (2009). Solventogenic clostridia possess
several phosphoenolpyruvate-dependent phosphotransferase
systems (PTSs) for the uptake of various carbohydrates
(Nölling et al. 2001; Mitchell and Tangney 2005). However,
glucose is a preferred substrate and activates catabolic repres-
sion systems to prevent simultaneous uptake and utilization of
other sugars (Patakova et al. 2013). Interestingly,
solventogenic cells exhibit a lower PTS activity compared to
acidogenic cells (Hutkins and Kashket 1986), but no signifi-
cant differences in glucose consumption have been observed
experimentally (Jang et al. 2014). Glycolytic breakdown of
internalized hexoses conserves energy in the form of two
ATPs, yielding two molecules of acetyl-CoA, two CO2, two
NADH and one reduced ferredoxin (per molecule hexose con-
verted). The latter can serve as a substrate for hydrogenase,
thus liberating hydrogen.

Three key branch points in the ABE network direct the
metabolic flux towards either acids or solvents. First, acetyl-
CoA serves as the starting point for the formation of acetate
(+1 ATP), ethanol and acetoacetyl-CoA (via condensation).
Second, acetoacetyl-CoA is a precursor for acetone and
butyryl-CoA. Third, butyryl-CoA can be converted to buty-
rate (+1 ATP) and butanol. As mentioned above, after the
initiation of solventogenesis, the formerly excreted acids are
re-assimilated and converted to their respective CoA deriva-
tives in reactions that involve CtfAB CoA transferase
(Andersch et al. 1983; Hartmanis et al. 1984) and possibly
other mechanisms (Desai et al. 1999a; Millat et al. 2014) as
depicted in Fig. 2.

Under certain conditions, lactate can also be formed, for
instance when hydrogenase activity is inhibited by carbon
monoxide (Datta and Zeikus 1985; Kim et al. 1984) or due
to iron limitation (Bahl et al. 1986; Peguin and Socaille 1995).
However, the lactic acid pathway is not operational under
normal conditions and generally inactive under solventogenic
pH levels (Jones and Woods 1986).

From this short summary and the fermentation scheme
shown in Fig. 2, it is clear that solventogenic cells conserve
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less ATP per molecule glucose than acidogenic cells. It should
be noted that C. acetobutylicum, in contrast to other
solventogenic clostridia, does not possess an RNF complex
and may therefore be unable to harness the energy released in
the electron transfer from reduced ferredoxin to NAD (Biegel
et al. 2011; Buckel and Thauer 2013). Thus, ATP generation
via substrate-level phosphorylation appears to be the only
mechanism of energy conservation in this organism.

Recent genome-wide studies have revealed that the meta-
bolic shift from acidogenesis to solventogenesis is accompa-
nied by considerable transcriptomic changes, e.g. Wang et al.
(2012) and Wang et al. (2013) (batch culture) and Grimmler
et al. (2011) and Janssen et al. (2012) (continuous culture),

and proteomic cellular composition, e.g. Jang et al. (2014)
(batch culture) and Janssen et al. (2010) (continuous culture).
Generally, production of solvent-forming enzymes is induced
and that of acid-forming enzymes reduced, although several
exceptions have been reported (Jang et al. 2014; Janssen et al.
2010). Furthermore, several genes display complex expres-
sion patterns during the transition from acid to solvent forma-
tion (e.g. Grimmler et al. 2011), suggesting that they are sub-
ject to complex genetic regulation.

Importantly, several key enzymes possess significant pH-
dependent activities under physiological conditions, thus im-
posing kinetic regulation on ABE fermentation. As may be
expected, key solvent-forming enzymes generally display an
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Fig. 2 The metabolic network of ABE fermentation in wild-type
C. acetobutylicum (Jones and Woods 1986). During acidogenesis (high
pH), the culture predominantly forms the organic acids acetate and
butyrate (red), whereas solventogenesis (low pH) features the formation
of the solvents acetone and butanol (blue). Ethanol is formed in minor but
similar amounts during both metabolic phases. In particular, solvent-
forming enzymes are subject to state-dependent synthesis as indicated
by the different colours. Three different mechanisms for acid re-
assimilation (orange) are considered in the models discussed in this
review: (1) acetate and butyrate cycles consisting of CtfAB-dependent

acid assimilation and ATP-forming acid kinase reactions coupled to
acetone formation (Hartmanis et al. 1984); (2) a reverse Buk-Ptb
mechanism (Desai et al. 1999a); and (3) Aor-dependent re-utilization
(Millat et al. 2014). The chemical equations below the network
summarize the mass balances resulting from stoichiometric conversion
of glucose to the indicated products. Two equations are given for the
formation of alcohols since aldehyde/alcohol dehydrogenases (AdhE)
use NADH as cofactor, whereas butanol dehydrogenases (Bdh) use
NADPH. Note that the function of AdhE1 as alcohol dehydrogenase
has been challenged (Yoo et al. 2015) (colour figure online)
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increased kinetic activity under solventogenic conditions,
whereas that of acid-forming enzymes is reduced under these
conditions (Andersch et al. 1983).

Without doubt, the transition from acidogenesis to
solventogenesis requires drastic changes at all levels of cellu-
lar organization (and potentially even the population level).
Insight into the biological principles causing these changes
can be gained through the generation of testable hypotheses
using mathematical models. A discussion of various ap-
proaches towards the mathematical description of clostridial
ABE fermentation is given in the following sections.

Models

Existing models of ABE fermentation can be classified
according to different schemes. In this review, we group
them according to the employed theoretical framework
and, where applicable, the experimental setup, i.e. batch
or continuous culture. This approach allows us to trace the
development of different models from their first imple-
mentation, including the latest developments. However,
we do not aim to provide a detailed description of each
model and its theoretical basis; instead, we only sketch
major features and refer to the respective publications
for more information.

Importantly, most models available to date share a com-
mon starting point assuming that changes in population-wide
metabolite concentrations are determined by the network
structure, the speed of the biochemical conversions and
transport processes and the population size, but differ in
how they proceed further. This kinetic approach is common-
ly expressed in matrix form (Heinrich and Schuster 1996):

dx1
dt
⋮
dxm
dt

2
664

3
775 ¼ N ⋅

s11 ⋯ s1n
⋮ ⋱ ⋮
sm1 ⋯ smn

2
4

3
5⋅

ν1
⋮
νn

2
4

3
5−D⋅

x1
⋮
xm

2
4

3
5: ð1Þ

Here, the matrix on the left hand side describes the
population-wide changes in metabolite concentration per
time. The first matrix on the right hand side is the stoichio-
metric matrix S, which represents the metabolic network of n
reactions and m metabolites. Its elements are negative or pos-
itive, representing the number of molecules consumed or pro-
duced, respectively, in a given reaction. An appropriate deter-
mination of this matrix is crucial for the later solution of the
matrix equation and strongly depends on available biological
information and experimental data but also the research ques-
tions under consideration.

The stoichiometric matrix S is multiplied by the flux vector
ν that encodes for reaction rates or fluxes. Its elements de-
scribe the frequency of a metabolic reaction that depends on
several influencing factors including enzyme activity and

abundance of enzyme, substrate(s) and inhibitors. All these
factors are subject to changes by cellular regulation and ex-
perimental setup. Furthermore, the frequency is restricted by
physicochemical and biological constraints, which can be
used to define the space of solutions but also to validate the
found solution.

In addition, we explicitly include the population size
into the above matrix equation to emphasize that the
population-wide metabolite concentrations are a function of
the cellular activity and the number of cells in the population.
The population size can be taken into account using either any
observable quantity that is proportional to the number of cells,
such as dry mass and optical density, or a growth law, e.g.
exponential growth.

The second term in Eq. (1) considers the dilution of metab-
olites xi in continuous culture. For the sake of simplicity, we
have assumed that the dilution rate D is constant in time and
for every metabolite. However, if retention or product-specific
extraction systems, e.g. membranes, are applied, the dilution
rate transforms into a matrix with metabolite-specific
elements.

Major differences exist between the various models as to
how the matrix equation is solved for a given biological sys-
tem or problem. In very general terms, existing approaches
focus either on the left or right hand side of Eq. (1) by simpli-
fying the respective opposite side.

Dynamic models intend to explain temporal changes,
i.e. the matrix on the left hand side, based on assumptions
about reaction rates, including reaction mechanism and
cellular regulation. Consequently, these models are well
suited to test hypotheses with respect to putative reactions
and their mechanisms as well as their regulation.
However, their high demand on dynamic data and addi-
tional information restrict the feasible network size, i.e.
matrix S.

In contrast, structural models use information about the
network structure to investigate the metabolic capabilities
of the cells. Towards this end, a (quasi-)steady assumption
is applied that transforms the system of differential equa-
tions into a system of algebraic equations. Then, flux bal-
ance analysis (FBA) (Kauffman et al. 2003; Orth et al.
2010; Varma and Palsson 1994) and elementary mode
analysis (EMA) (Schuster et al. 1999; Schuster and
Hilgetag 1994; Heinrich and Schuster 1998) are applied
to determine a matrix ν that fulfils the resulting equation

0 ¼ S⋅ν ð2Þ

and provides insights into the metabolic routes and their
ac t iv i t ies dur ing the metabol ic (s teady) s ta tes .
Accordingly, these models are used to investigate alter-
ations to the bacterial metabolism in response to changes
in the metabolic network.
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Structural models for solventogenic clostridia using flux
balance analysis

Flux balance analysis (FBA) assumes that the metabolism
approaches a steady state that is determined by the metabolic
network (stoichiometry) including enzymatic reactions, trans-
port processes, physicochemical properties and biological
constraints such as toxicity and ATP maintenance costs
(Kauffman et al. 2003). Generally, our incomplete knowledge
of these constraints, in particular the physicochemical ones,
leads to underdetermined systems for which multiple steady-
state solutions exist. Hence, an optimization is carried out to
find an optimal distribution of fluxes with respect to a speci-
fied (multivariate) objective function (Segrè et al. 2002).
However, it should be noted that regulation of reactions or
pathways is not explicitly considered.

The first model employing the idea that metabolic activity
of solventogenic clostridia at steady state balances elemental
composition of utilized organic substrates, microbial biomass
and extracellular products was published by Papoutsakis in
1984 (Papoutsakis 1984). It uses stoichiometric equations to
represent the conversion of glucose into primary products and
key intermediates of ABE fermentation and, thus, is often
referred as ‘stoichiometric’ model. From the system of stoi-
chiometric equations, a fermentation equation is derived that
describes the flux distribution towards the formation of in-
cluded metabolites, energy carriers and biomass. The
respective fluxes and, thus, the coefficients of this equation
are constrained by the necessary balance of carbon, nitrogen,
hydrogen and oxidation/reduction reactions and by assuming
irreversible metabolic reactions, except for the formation of
NADH and reduction of ferredoxin.

Based on the derived fermentation equation, Papoutsakis
(1984) found that while acetone, isopropanol, butyrate and
acetate could each be formed as the sole product in an ideal
fermentation, the formation of butanol required simultaneous
formation of acetate. The computed product yields represent-
ed theoretical maxima of product formation to achieve in ABE
fermentation from a given sugar, since the ‘simple’ stoichio-
metric network neglected other cellular functions. This ap-
proach can be considered a valid starting point for the evalu-
ation of the potential of a given metabolic network for bio-
technological applications.

In this first model, the re-assimilation of acetate during the
metabolic shift and solventogenesis was neglected. However,
while this approach agreed with experimental studies suggest-
ing that it is mainly butyrate that is re-utilized under both batch
and continuous culture conditions (Mermelstein et al. 1993;
Millat et al. 2013a), it was at odds with biochemical evidence
showing that clostridial CtfABCoA transferases prefer acetate
to butyrate as a substrate (Wiesenborn et al. 1989).
Furthermore, addition of exogenous acetate to the culture me-
dium was reported to have a positive effect on solvent

formation in solventogenic clostridia (Gao et al. 2016; Fond
et al. 1985; Chen and Blaschek 1999a) suggesting an active
pathway for reutilization of acetic acid.

Hence, Desai and Papoutsakis in 1999 (Desai et al. 1999b)
extended the original stoichiometric model by adding a CoA
transferase-dependent pathway for acetate re-utilization.
However, this addition resulted in a singularity, i.e. no unique
solut ion could be found for the network during
solventogenesis. This singularity is caused by the simulta-
neously active pathways of formation and re-assimilation of
acetate and butyrate, respectively (Fig. 2). Since both ‘acid
cycles’ independently generate ATP by cycling the acids,
maximal ATP generation could be achieved by multiple com-
binations of differently active acetate or butyrate cycles.

To resolve this singularity, the authors introduced an addi-
tional, non-linear constraint that relates the experimentally
observed ratio of butyrate and acetate uptake to the ratio of
their intracellular concentrations. The latter were assumed to
be constant and identical to the ratio of external concentra-
tions. In this form, the model allowed determination of a
unique metabolic flux distribution that reproduced the exper-
imentally observed rates of acid uptake and product accumu-
lation. It should be noted, however, that the internal and ex-
ternal butyrate/acetate ratios are approximately constant
(though not identical) for solventogenic pH values only.

Finally, the authors concluded from the calculated produc-
tion and reutilization rates of acetate, butyrate and acetone that
acetate re-assimilation primarily accounted for acetone pro-
duction, while butyrate was re-assimilated through both the
reverse butyrate and acetone pathways (see Fig. 2).
Furthermore, they predicted that a considerable amount of
acetate is continuously formed and to a large degree cycled
to generate additional ATP during solventogenesis. These
findings suggested that acid formation plays a significant role
for ATP generation in both metabolic phases.

In a follow-up study (Desai et al. 1999a), the authors
applied their extended model to batch fermentation data
obtained for a strain overproducing the enzymes required for
butyrate formation, phosphotransbutyrylase (PTB) and buty-
rate kinase (BUK), and a mutant deficient in the buk gene.
Interestingly, analysis of the calculated metabolic fluxes sug-
gested that butyrate re-utilization is decoupled from acetone
formation, again implying the existence of a CtfAB-
independent route for its re-assimilation.

Whereas the metabolic networks discussed above were
manually constructed based on the biochemical and genetic
information available at the time, the early 2000s experienced
the rise of database-driven network reconstruction. This de-
velopment was initiated by major improvements in sequenc-
ing technologies allowing for an ever increasing number of
organisms to be completely sequenced. As a result, the anno-
tated genomes for C. acetobutylicum ATCC 824 and
C. beijerinckii NCIMB 8052 were published in 2001 and
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2011, respectively (Nölling et al. 2001; Wang et al. 2011), and
have since served as a basis for reconstruction of metabolic
reactions and membrane transport processes related to ABE
fermentation. The genomes of C. saccharobutylicum and
C. saccharoperbutylacetonicum have also become available
(Poehlein et al. 2013; Poehlein et al. 2014), but have not yet
been exploited for modelling purposes. Additionally, recent
re-sequencing of C. acetobutylicum ATCC 824 (Ehsaan
et al. 2016) found several discrepancies from the aforemen-
tioned genome sequence (Nölling et al. 2001) with not yet
known consequences for the reconstruction of its metabolic
network.

To start with, genome-scale (metabolic) models use infor-
mation from annotated genome sequences to reconstruct a first
draft metabolic network. Then, missing and incorrect reac-
tions are identified resulting from incomplete, inaccurate and
ambiguous annotation. Thermodynamic information is used
to categorize the metabolic reactions with respect to their di-
rection and to determine the overall feasibility of the network.
Furthermore, cellular information, e.g. biomass composition,
cellular maintenance costs and biochemical information such
as metabolite fluxes, constrain possible steady-state solutions
(see reviews (Fell et al. 2010; Thiele and Palsson 2010; Durot
et al. 2009) for more details). Because of their fundamental
design principle, genome-scale models do not include internal
regulation, but their results could be considered by imposing
external constraints based on experimental observations.
Many automated tools have been developed to support the
many construction steps, but still significant manual valida-
tion is required on the way towards reliable genome-scale
networks.

The first two genome-scale metabolic models of
C. acetobutylicum were established simultaneously in 2008
by Senger and Papoutsakis (2008a, b) and Lee et al. (2008).
Interestingly, different solutions were proposed to fill gaps in
the reconstructed metabolic network caused by incomplete
functional information about genes and their products. More
specifically, both attempts used mutually exclusive mecha-
nisms for the α-ketoglutarate biosynthesis. In Senger and
Papoutsakis (2008a), it was suggested that the urea cycle is
used to compensate for an incomplete TCA cycle, whereas
Lee et al. (2008) assumed that the reductive pathway from
pyruvate to α-ketoglutarate is connected. However, recent
13C-labelling experiments corroborated the first assumption
(Au et al. 2014).

In their first paper, Senger and Papoutsakis (2008a) also
assessed the thermodynamic feasibility of proposed pathways
under acidogenic and solventogenic conditions. Towards this
end, the authors assumed that a negative Gibbs free energy of
reaction is required for every metabolic reaction in a pathway
under physiological conditions (except the assumption of neu-
tral pH) to render a pathway thermodynamically feasible.
Most interestingly, their analysis using L-glutamate as an

example suggested that changing ADP/ATP and NAD+/
NADH ratios (Girbal and Soucaille 1994; Grupe and
Gottschalk 1992; Meyer and Papoutsakis 1989), which in turn
depend on the metabolic state of the culture, could alter the
thermodynamic feasibility of pathways and, thus, could initi-
ate an adaptation in the cellular metabolic program.

In a subsequent paper (Senger and Papoutsakis 2008b), the
authors focussed on changes to the specific proton flux during
acidogenesis and solventogenesis. Towards this end, extracel-
lular proton concentrations and their transport across the cell
membrane were introduced into the model. According to this
extended model, acid- and solvent-forming cells differ consid-
erably in terms of their proton fluxes, suggesting that this trait
may be used to identify the prevailing metabolic program and,
hence, phenotypic composition of a culture. Interestingly, for
the extended model to accurately reproduce the experimental-
ly determined extracellular pH changes in batch culture, mul-
tiple discrete proton flux states had to be assumed, each of
which might represent a distinct cellular state. According to
this interpretation, acid and solvent batch culture populations
would consist of more than two distinct metabolic cell types.

By contrast, Lee et al. (2008) used their model to investi-
gate the impact of maintenance energy on growing
(acidogenic) and non-growing (solventogenic) cells.
Consistent with experimental data, it was shown for growing
cells that an increased demand for maintenance energy led to a
decrease in specific growth rate and simultaneously shifted
acid formation from butyrate to acetate. Furthermore, the
model predicted an elevated butanol production under
inhibited hydrogenase activity. An additional model analysis
identified essential genes providing information about genetic
targets for metabolic engineering (Brockman and Prather
2015).

Starting from themodel by Senger and Papoutsakis (2008a,
b), McAnulty et al. (2012) constructed a new, considerably
extended model (iCAC490). Contrary to previous models, it
contains a full TCA cycle considering recent fluxomics data
(Crown et al. 2011; Amador-Noguez et al. 2010).
Furthermore, a new method (FBrAtio) that considers how a
metabolite pool (branched metabolite) is distributed among
competing enzymes and, thus, fluxes introduced additional
constraints to the metabolic network. Previously estimated
ratios (Desai et al. 1999b) were applied to describe the
C. acetobutylicum wild type. Moreover, several combinations
of CtfAB CoA transferase and (supposedly) bifunctional
AdhE knockdowns and overexpressions were analysed with
respect to changes in product formation.

More recently, Dash et al. (2014) reported the construction
of a second-genera t ion genome-sca le model of
C. acetobutylicum (referred to as iCac802). Taking into ac-
count new results from labelling experiments (Au et al.
2014), this model again considered an incomplete
(branched) TCA cycle. However, the reported experiments
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(Au et al. 2014) used a defined media supporting significantly
slower growth than complex media used in fluxomics exper-
iments (Crown et al. 2011; Amador-Noguez et al. 2010)
which might result in different flux distributions.
Furthermore, the model included a complete fatty acid synthe-
sis pathway and additions to the purine, pyrimidine and co-
balamin biosynthetic pathways. Moreover, several thermody-
namically unfavourable reactions were re-inserted and related
reactions were either removed or altered to avoid the forma-
tion of thermodynamically infeasible cycles based on 13C-la-
belling experiments (Au et al. 2014). The resulting network
included around 800 genes, 1500 reactions and 1200
metabolites and was thus three times larger than the
first-generation models (Senger and Papoutsakis 2008a,
b; Lee et al. 2008). Finally, the model was calibrated
using calculated fluxes recently published by Lehmann
et al. (2012).

Additionally, the authors (Dash et al. 2014) established a
method referred to as CoreReg to incorporate regulatory in-
formation into structural models. CoreReg modified the flux
bounds of reactions according to fold changes in gene expres-
sion which were experimentally observed under butyrate and
butanol stress conditions (Wang et al. 2013). Subsequent in-
terrogation of the model corroborated previous experimental
findings (Wang et al. 2013; Alsaker et al. 2010), i.e. butanol
stress strongly influences arginine metabolism, whereas buty-
rate stress imposes regulations on reactions in arginine and
pyrimidine metabolism.

In a very recent study, Yoo et al. (2015) combined a further
improved genome-scale model with quant i ta t ive
transcriptomic, proteomic and fluxomic data. With a total of
967 genes, this model, referred to as iCac967, considered 20%
more genes than iCac802 (Dash et al. 2014), but incorporated
only 84% of the latter’s reactions and 93% of its metabolites,
illustrating that proposed gene functions are far from common
consensus and the need for manual, expert curation of auto-
mated annotations.

The study included biochemical characterizations of sever-
al key solvent-forming enzymes. While the bifunctional role
of AdhE2 as a butanol/butyraldehyde dehydrogenase was
confirmed (Fig. 2), AdhE1 was found to lack significant bu-
tanol dehydrogenase activity, thus requiring the presence of
additional butanol dehydrogenase(s) to form butanol from
butyryl-CoA. Furthermore, the authors reported that the activ-
ity of all three butanol dehydrogenases (BdhA-C) depends on
NADPH and not NADH as claimed in previous biochemical
studies (Welch et al. 1989; Petersen et al. 1991).

Another key aspect of this study was the combination of
the developed genome-scale model with quantitative
transcriptomic and proteomic data obtained from phosphate-
limited continuous cultures (Yoo et al. 2015) to determine
metabolic fluxes under acidogenic and solventogenic condi-
tions. Interestingly, this approach confirmed suggested

distinct roles for (alcohol)/aldehyde dehydrogenase AdhE1/2
(Grimmler et al. 2011; Millat et al. 2013a), with AhdE2 being
crucial for butanol formation under acidogenic conditions and
AdhE1 together with the major butanol dehydrogenase BdhB
under solventogenic conditions.

The first genome-scale model, iCM925, for C. beijerinckii
NCIMB 8052 was published byMilne and co-authors in 2011
(Milne et al. 2011). This model considered 925 genes, 938
reactions, 881 metabolites and 67 membrane transporters.
Simultaneously to the construction of the model, the authors
conducted batch culture experiments at different temperatures
and determined growth rate, substrate uptake (glucose and
acetate) and secretion of liquid products. The latter experi-
mental information was applied to further constrain the model.
From the deviations found between their model predictions
using optimal growth as sole criterion and their experimental
observations, the authors finally concluded that additional se-
lection pressures gave rise to the observed behaviour.
Interestingly, no metabolic flow towards and from malate
was found in the model rendering the structural complete
TCA cycle functionally incomplete under the considered ex-
perimental conditions. Furthermore, the authors investigated
the effect of varying fixed hydrogen production on the model
behaviour. It was found that high hydrogen production forces
the metabolic flow towards acetate whereas low levels of hy-
drogen production favours butanol formation which is in line
with different amounts of hydrogen experimentally observed
during acidogenesis and solventogensis (Rogers 1986).

Starting with small stoichiometric models and eventually
using more and more detailed metabolic representations on
the genome scale, flux balance analysis and subsequent non-
linear optimization have been established as an integral meth-
od for the theoretical investigation of ABE fermentation. The
different modelling attempts discussed above provided valu-
able knowledge about how the metabolic fluxes alter at
acidogenic and solventogenic conditions and how mutations
divert those fluxes towards differing product spectra. Perhaps
somewhat surprisingly, key parts of the metabolic network are
still a matter of debate, in particular whether a TCA cycle is
operational or not, and how changing environmental condi-
tions alter the network structure, e.g. by alteration of thermo-
dynamic feasibility of reactions. Importantly, genome-scale
models do not consider existing regulatory mechanisms and
therefore cannot describe metabolic transitions as a cascading
sequence of events.

Structural models for solventogenic clostridia using
elementary mode analysis

In elementary mode analysis, the steady-state capabilities of
the metabolic network are represented as a set of irreducible
pathways such that their linear combination (superposition)
results in the experimentally found metabolic fluxes
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(Schuster et al. 1999; Schuster and Hilgetag 1994; Heinrich
and Schuster 1998). Here, an irreducible pathway consists of a
minimal set of biochemical reactions and transport processes
at steady state that cannot be decomposed into simpler
(sub)networks without loss of functionality. A combinatorial
explosion in the number of elementary modes with increasing
network size renders their computation an intricate numerical
problem, but over the last decade, several approaches have
been developed to tackle this challenge (see e.g. Schuster
et al. 2000a; Wagner 2004; Klamt et al. 2005). Finally, the
identified elementary modes are weighted by the flux they
carry such that their linear combination matches experimen-
tally determined rates of substrate uptake and product forma-
tion (Heinrich and Schuster 1996). Again, the solution space
is restricted by physicochemical and biological constraints
and optimality criteria select for specific solutions.

In 2014, Kumar et al. (2014) applied this approach to mod-
el the metabolic fluxes in C. acetobutylicum under batch cul-
ture conditions for acidogenesis, solventogensis and stressed
conditions. Interestingly, the authors found three different
classes of modes: first, acidogenic modes that exhibit glucose
consumption, acid formation and biomass production; second,
solventogenic modes that form solvents using either glucose
or glucose together with re-assimilated acids; and third, mixed
modes that form acids and solvents concomitantly, but differ
in biomass production. Importantly, nomodes were found that
resulted in glucose-independent solvent formation. However,
some of the reported findings disagree with previous experi-
mental work using mutants of C. acetobutylicum. For in-
stance, the authors found for acidogenicmodes that generation
of butyrate was essential for biomass formation, even though
butyrate-negative ptbmutants had already been generated and
reported to display elevated acetate and ethanol production
(Cooksley et al. 2012; Lehmann et al. 2012). Furthermore,
the authors found that butanol and acetone formation is strictly
coupled, but recent experiments using a ctfA mutant revealed
that significant butanol production can take place even in the
absence of acetone formation (Millat et al. 2014).

Furthermore, the authors used experimental data for
stressed and unstressed cells (Kumar et al. 2013) to study
changes in activity of elementary modes due to altered exter-
nal conditions. Interestingly, the authors showed that
solventogenesis in C. acetobutylicum is not causally linked
to stationary growth in batch culture as often claimed in the
literature (e.g. Alsaker and Papoutsakis 2005; Desai et al.
1999a; Grimmler et al. 2011; Lee et al. 2008; McAnulty
et al. 2012). As might be expected, the pattern of found ele-
mentary mode activity revealed that acidogenic modes domi-
nate during acidogenesis and solventogenic modes during
solventogenesis. Under stressed conditions (e.g. a sudden
change of external pH and addition of exogenous acids), ele-
mentary modes became active that combined acidogenic and
solventogenic characteristics resulting in a culture that

exhibited the two featured fermentations states simultaneous-
ly. In agreement with previous proposals (Clarke et al. 1988),
it was suggested that this could be explained by the occurrence
of heterogeneous subpopulations.

A decomposition into elementary modes provides a set of
metabolic pathways that can be classified according to a given
feature, e.g. products, commonly used enzymes or metabolic
activity at given conditions, an information which can be used
to deliberately target specific groups of pathways by means of
metabolic engineering. Unfortunately, the number of elemen-
tary modes is rapidly increasing with the network size render-
ing a targeted analysis difficult or even intractable. However,
current research is ongoing to reduce the number of elemen-
tary modes based on biological and physicochemical criteria
(Hartman et al. 2014; Gerstl et al. 2016).

Structural models for solventogenic clostridia using graph
theory

An alternative approach to the stoichiometric matrix used for
flux balance analyses and elementarymode analysis discussed
above, signal flow graphs were recently employed by Li et al.
(2013, 2014) to model the carbon flow through a simplified
ABE network without ethanol formation. Considering meta-
bolic networks, a signal flow graph is a directed graph which
represents a unidirectional molecular flow. Its vertices (or
nodes) represent signals, e.g. metabolite concentrations, and
the edges (branches, arrows) represent functional dependen-
cies, e.g. carbon flow from metabolite to metabolite (Mason
1956). Avertex receives signals via incoming edges and trans-
mits information along outgoing edges, information being, for
instance, increases or decreases in the concentration of a given
metabolite. Thus, the net signal of each node is the sum over
all incoming and outgoing edges. Taken together, these com-
ponents establish a set of algebraic equations describing the
vertices of the network (Mason 1956; Dobrijevic et al. 1995).

This set of equations is represented in matrix form similar
to Eq. (1), where the matrix on the left hand side now repre-
sents the signals, i.e. metabolite concentrations. Two related
matrices can be used to represent the network structure
(Diestel 2005). The adjacency (or connection) matrix de-
scribes whether two vertices are connected or not, whereas
the incidence matrix specifies whether a vertex depends upon
an edge. The latter matrix is generally used to represent phys-
ical systems, because it evidently maps cause and effect. For
directed graphs, its elements are ±1 representing an incoming
or an outgoing edge, respectively, and zero for unrelated com-
binations. Thus, an incidence matrix is similar to a stoichio-
metric matrix, but not equivalent as it excludes stoichiometric
factors. Instead, stoichiometric factors are included in signal
transfer functions that define the signal flow along an edge.
Analogous to Eq. (1), the matrix of signal transfer functions is
multiplied with the incidence matrix. Importantly, rules can be
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applied to construct signal transfer functions for network paths
(Mason 1956).

Applying this theoretical framework, Li et al. (2013) inves-
tigated the factors which determine the acetone/butanol ratio
and the formation of NADH. The authors found that the
acetone/butanol ratio was primarily affected by the butyrate
cycle (Fig. 2) with an attenuated activity of this cycle predict-
ed to improve butanol formation. This finding is consistent
with the experimentally observed reduced specific activity of
butyrate kinase during solventogenesis (Andersch et al. 1983).

In a follow-up study (Li et al. 2014), signal flow graphs
were also employed to model the effects of feeding exogenous
acetate or butyrate during solventogenesis which, in accor-
dance with previous experimental evidence (Chen and
Blaschek 1999a, b), revealed a positive influence of either
acid on solvent formation. However, as the original model
(Li et al. 2013) could not fit experimental data sufficiently,
its structure was revised by taking into account the altered
experimental conditions. It was found that a modified model
with incomplete acid cycles agreed best with data obtained in
acid feeding experiments (Li et al. 2014). Hence, the authors
speculated that acid cycle disruption (Fig. 2) is caused by
unfavourable thermodynamic conditions resulting from acid
addition.

The presented results suggest that signal flow graphs
might be an interesting alternative to the kinetic approach
Eq. (1) and appears to be particularly promising in situa-
tions where the kinetic mechanisms are unknown.
However, the studies discussed above did not consider cel-
lular alterations between the two metabolic phases. It
would be interesting to identify changes to the network,
signal transfer functions and/or network parameters, in par-
ticular distribution coefficients of branch points, which oc-
cur during the transition. Such an investigation could pro-
vide additional information to both structural and dynam-
ical models.

Dynamic models

In contrast to the structural models discussed above, dynamic
models of ABE fermentation describe the changes of key me-
tabolites in clostridial metabolism over time. Naturally, the
dynamic transition between acidogenesis and solventogenesis
and the intra- and extracellular events triggering this response
are the focus of these approaches. Additionally, sensitivity
analyses investigating the effect of kinetic parameters and
gene expression on product formation often complement these
studies. Towards this end, dynamic models consider biochem-
ical and biophysical mechanisms as well as cellular regula-
tions relevant to the ABE network. The activity (flux) of the
network is determined by the abundance of participating or
affecting molecules (e.g. substrates, enzymes, cofactors, prod-
ucts and inhibitors) and kinetic parameters describing

molecular details of the processes (e.g. rate constants,
Michaelis-Menten constants and kinetic orders) .
Furthermore, the population size is an important parameter
as it governs the observed time courses of acids and solvents.

As a mechanistic approach, dynamic models rely heavily
on estimation of their parameters from experimental data. This
is a non-trivial numerical problem (e.g. Ashyraliyev et al.
2009; Chou and Voit 2009), as parameter identification is
strongly affected by quality and quantity of experimental data
and experimental design (Audoly et al. 2001; Banga et al.
2002; Emery and Nenarokomov 1998). Due to these restric-
tions, reported dynamical models of ABE fermentation con-
sider only the central metabolic reactions of the network, i.e.
those that describe the conversion of sugars, often glucose, to
acids and solvents. Additionally, consecutive steps in the con-
version of key metabolites are often combined into single
steps to further simplify the system.

In vitro biochemical studies have elucidated the mech-
anisms of many enzymatic reactions in the ABE network
(see Gheshlaghi et al. 2009 and references therein). Based
on this information, Michaelis-Menten-like constants had
been determined for a majority of reactions. However, the
lack of data for catalytic constants (or limiting rates if
multiplied with the total enzyme concentration) creates a
serious problem for dynamical models, because the dy-
namic behaviour is encoded in these parameters and not
the Michaelis-Menten constants (Millat et al. 2013b). The
importance of limiting rates might be illustrated by the
following: solventogenic clostridia are able to regulate
limiting rates by changing enzyme concentrations, where-
as Michaelis-Menten constants are solely determined by
physical properties. Hence, experimental determination of
limiting rates, i.e. catalytic constants and enzyme concen-
trations, is crucial for an improved understanding of dy-
namic changes observed in ABE fermentation.

It should be noted that, similar to structural models, dynam-
ical models have to obey physicochemical and biological con-
straints, e.g. the computed metabolite concentrations have to
be non-negative and physiologically reliable, catalytic con-
stants have to be non-negative and smaller than the diffusion
limit, etc. Furthermore, the network structure is also defined
by a stoichiometric matrix.

The irreversible decarboxylation of acetoacetate by
acetoacetate decarboxylase (inconsistently abbreviated as
Adc or Aadc), which results in formation of acetone and car-
bon dioxide formation, illustrates the requirement for im-
proved consideration of both kinetic and genetic regulation.
Its catalytic ‘constant’, kcat, exhibits a remarkably strong pH
dependence in the physiological range of clostridial ABE fer-
mentation (Andersch et al. 1983; Ho et al. 2009). Here, con-
clusions about the metabolic activity of the reaction based
solely on transcriptomic or (preferably) proteomic data might
be misleading.
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In the absence of such detailed information, the measure-
ment of the ratio of catalytic constant and Michaelis-Menten
constant would provide valuable information, because en-
zyme kinetic reactions can also be represented as apparent
bimolecular reactions that are only determined by this ratio
(Millat et al. 2007).

Dynamic models describing batch cultures

In the late 1980s, Volesky and co-workers published a series
of dynamic models for ABE batch fermentation using a mod-
ified C. acetobutylicum ATCC 824 (Votruba et al. 1986;
Yerushalmi et al. 1986a; Srivastava and Volesky 1990).
Their initial model (Votruba et al. 1986) consisted of a set of
differential equations describing product formation, acid re-
assimilation and sugar consumption, without considering in-
tracellular metabolites. The authors termed this model pro-
cess-oriented, but referred to it as ‘process kinetics model’ in
a later publication (Yerushalmi et al. 1986a). A basic assump-
tion of the model was that acid formation is inhibited by bu-
tanol, which resulted in increased solvent formation. It also
incorporated re-assimilation of acetate and butyrate and their
immediate conversion into ethanol and butanol, respectively.

Fermentation metabolism was directly coupled to growth
rate which in turn depended on the available extracellular
sugar and was inhibited by butanol. Additionally, the authors
assumed that cellular decay occurs because of butanol poison-
ing. To represent biomass growth, the model employed the
‘concept of physiological state’ (Harder and Roels 1982) that
correlates specific growth rate and RNA content.

Based on the process kinetics model, Volesky and co-
workers subsequently developed a ‘physiological state model’
(Yerushalmi et al. 1986a) that distinguished between intra-
and extracellular concentrations of acids and solvents. Here,
intracellular product formation was described by the original
process kinetics model (Votruba et al. 1986). The intracellular
product concentrations were coupled to their extracellular
counterparts via diffusion along concentration gradients.
Additionally, acid transport was facilitated along an electrical
potential gradient generated by the dissociation of acids in the
extracellular medium (Yerushalmi et al. 1986b). Furthermore,
a carrier model (Weiss 1996) was used to describe the trans-
port of sugar into the cells, in which transporter activity was
assumed to be inhibited by butanol.

Major criticism (Ataai and Shuler 1988; Bajpai and
Iannotti 1988) of both models arose from the fact that they
were insensitive to variations in the culture pH. Because the
culture pH crosses the pKa values for acetate (pKa = 4.76) and
butyrate (pKa = 4.82), it is generally assumed that their con-
version into solvents is a protective countermeasure against
undissociated acids diffusing back into the cells. In an updated
physiological state model (Srivastava and Volesky 1990), the
pH-dependent dissociation of acids was therefore considered

using the Henderson-Hasselbach equation (Atkins and de
Paula 2002).

To identify important process parameters, the authors con-
ducted a parametric sensitivity analysis showing that biomass
growth and butanol and butyrate accumulation exhibited the
highest sensitivity and, thus, represented the most important
process parameters. The next highly ranked parameters deter-
mined the efficiency of transmembrane transport processes,
i.e. sugar transport into the cell and product transport out of
the cell, leading to the hypothesis that alterations in transport
coefficients could improve ABE fermentation (see Yerushalmi
et al. 1986a for further details and experimental hypothesis
testing).

Despite their interesting results, the above models share a
major drawback linked to their origin as process-oriented
models: the structure of the ABE network and features of
network components were completely neglected.
Furthermore, 14C-labelling experiments have shown that a
significant portion of re-assimilated acetate is also converted
to butanol (Wood et al. 1945), which disagrees with the acetate
re-assimilation mechanism assumed in the models which
leads exclusively to ethanol. Moreover, pH-dependent regula-
tion of enzymes, including their kinetic properties, gene ex-
pression and cellular abundance, were not considered. Finally,
the inhibitory role of butanol is challenged by experiments
indicating that acetate and butyrate have a stronger inhibitory
impact on cell growth than butanol (Yang and Tsao 1994;
Ballongue et al. 1987).

A dynamic model of ABE fermentation in C. saccharo
perbutylacetonicum N1-4 ATCC 13564 was introduced by
Shinto et al. in 2007 (Shinto et al. 2007). For the sake of
simplification, formation of products from their corresponding
branch metabolites was represented by single conversions.
Furthermore, the authors assumed reversible reactions for
both acetate and butyrate formation in addition to CoA
transferase-mediated acid re-assimilation, even though there
is experimental evidence contradicting this assumption for
acetate formation (Andersch et al. 1983; Hartmanis et al.
1984). In the model, all metabolic reactions were coupled to
a biomass function which in turn was determined by a cellular
growth function and a cellular death function. The growth of
the culture was assumed to be proportional to the formation of
acetyl-CoAwith the result that ABE fermentation and biomass
formation competed for this key intermediate. Increasing acid
concentrations initiated their re-assimilation and butanol for-
mation. In addition, the formation of butanol was assumed as
self-inhibitory.

The model was fitted to data obtained for batch cultures
starting with an initial acetate concentration of 40 mM—a
value usually observed at the final stage of standard batch
culture experiments—which renders a comparison to other
experimental and theoretical results difficult. Furthermore,
several experimental findings were not taken into account,
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e.g. constant kinetic parameters and an acetone production
independent from the metabolic state do not agree with exper-
imental evidence. Furthermore, the model also predicted lac-
tate formation in approximate same amounts as ethanol under
normal fermentation conditions, which is in contrast to exper-
imental findings (Jones and Woods 1986).

In the second part of the paper, a single-parameter sensitiv-
ity analysis with respect to butanol formation was conducted.
However, the results of this analysis are of only limited infor-
mative value, as several kinetic parameters in the ABE net-
work depend on each other. For instance, reactions that are
carried out by the same enzyme (e.g. ethanol and butanol
formation by AdhE2 or acetate and butyrate activation by
CtfAB) could be affected simultaneously.

Similar modelling approaches were applied in two subse-
quent publications. In the first (Shinto et al. 2008), Shinto and
co-authors compared the effect of glucose and xylose (via the
pentose phosphate pathway) utilization rates when used as
sole carbon and energy source by C. saccharoper
butylacetonicum N1-4. Interestingly, the study concluded that
slower substrate utilization gives rise to higher butanol yields
and, thus, slower xylose utilization resulted in higher product
yields. However, any regulatory effects of butyrate and buta-
nol on butyrate re-assimilation and butanol formation were not
considered in this model, in contrast to the preceding studies
discussed above.

Li et al. (2011a) used a similar but extended model, which
considered two sequential reactions for the formation of ace-
tate and butyrate, to investigate the role of butyryl phosphate
in the initiation of solvent formation in C. acetobutylicum.
Interestingly, the computed time course of butyryl phosphate
reproduced the experimentally observed two peaks in intracel-
lular butyrate phosphate levels, which correlate to the initia-
tion of solvent formation and butyrate re-utilization, respec-
tively. However, the qualitative behaviour of predicted butyryl
phosphate, butyrate and butanol concentrations deviated from
the reported data (Zhao et al. 2005). This suggests that the
actual mechanisms for acetyl/butyryl phosphate formation dif-
fer from those assumed in the model. Indeed, experimental
findings for buk and pta mutants had already suggested that
two different mechanisms were responsible for the observed
double-peak structure (Zhao et al. 2005).

In a more recent study, Raganati et al. (2015) investigated
the effects of different sugars in ABE batch fermentations of
C. acetobutylicum by applying an updated version of the mod-
el introduced in Shinto et al. (2008). In this updated model, a
formally unbounded butanol inhibition of cell growth was
replaced with a finite ‘critical’ butanol concentration which
also constrained butanol-inhibited glucose uptake and self-
inhibitory butanol formation. Similarly, critical concentrations
were introduced for acetate, butyrate, acetone and ethanol,
leading to an improved biomass equation that considered in-
hibitory effects of all liquid fermentation products. The

resulting estimated parameter values principally agreed with
previous results (Yang and Tsao 1994) showing that acetate,
butyrate and butanol significantly inhibit growth, although
their ranking remained uncertain.

Asmight be expected, sugar uptake activities were found to
be strongly dependent on the given substrate and to coincide
with experimentally confirmed preferences. Furthermore, cul-
tures fed with glucose possessed the highest metabolic activity
and the lowest tendency to sporulate. However, rates of other
investigated hexoses differed from glucose only within a 20%
range. In accordance with early studies of clostridial ABE
fermentation (Robinson 1922), the authors found that fermen-
tation of xylose and arabinose is distinct from that of other
sugars. Furthermore, they speculated that the slower utiliza-
tion observed for disaccharides, sucrose and lactose resulted
from different membrane transport mechanisms and hydroly-
sis reactions. Although the updated batch culture model
(Raganati et al. 2015) provided improved insights into ABE
fermentation of different sugars, a sophisticated understanding
of the reported findings based on their biochemical and ther-
modynamic properties remains elusive.

Taken together, existing dynamic models of ABE batch
fermentation focus almost exclusively on the metabolic level.
As a result, detailed metabolic models had been developed
which consider the involved biochemical reactions as func-
tions of metabolite concentrations, including positive and neg-
ative product regulation. Butanol in particular is assumed to
inhibit cellular activity. However, given that all models predict
butanol formation considerably earlier than is experimentally
observed, this assumption must be questioned. Additionally,
dynamic batch models commonly link the metabolic shift to
sugar depletion, whereas it is experimentally well established
that the majority of substrate (glucose) is converted following
the shift to solvent formation and that sugar-limited batch
cultures do not exhibit the classical ABE fermentation profile
(Monot and Engasser 1983; Long et al. 1984).

Furthermore, changes in transcriptome, proteome and endo
metabolome, which have obvious effects on cellular metabolic
activities and parameters, as well as some alterations in the
environome (in particular the pH level) are barely considered.
While this information was not available when the first series
of batch models was developed during the mid-1980s, it has
not been taken advantage of even in the most recent batch
culture models. As a consequence, despite yielding some in-
teresting results, currently available batch models ultimately
fail to provide a mechanistic, biological explanation for the
metabolic shift from acid to solvent formation.

Dynamic models describing continuous cultures

Continuous culture allows bacteria to be grown in a constant,
well-defined and highly reproducible environment. Important
factors such as the concentration of nutrients and fermentation
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products, pH value, growth rate and population density, which
inevitably change during batch culture growth, are maintained
at a steady state and may even be varied independently
(Herbert et al. 1956) In comparison to traditional ABE batch
culture, continuous culture thus allows a better separation of
environmental and cellular changes and, therefore, the com-
plex cascade of events finally resulting in the metabolic shift
from acid to solvent formation. Despite these advantages, dy-
namic models describing continuous cultures have only been
developed relatively recently as a result of a systems approach
initiated by the transnational European COSMIC consortium
to investigate ABE fermentation and sporulation in
C. acetobutylicum.

All experiments and targeted mutations used a derivative of
C. acetobutylicumATCC 824 (the ‘COSMIC strain’) originat-
ing from the Rostock strain collection. ABE fermentation was
studied using phosphate-limited continuous culture which of-
fered superior reproducibility over traditional batch cultures
(Hoskisson and Hobbs 2005). In particular, the consortium
focussed on investigating the cellular changes caused by al-
tering the culture pH from pH 5.7 (acidogenic state) to pH 4.5
(solventogenic state), termed ‘forward-shift’, and from pH 4.5
to pH 5.7, termed ‘reverse shift’ (for further details about the
experimental setup and sampling methods, see Fischer et al.
2006; Fiedler et al. 2008). The obtained experimental data was
exploited in several continuous culture models of the pH-
induced metabolic shift which will be discussed in the follow-
ing paragraphs.

Common to all models is their focus on intra- and extracel-
lular changes and their effects on the metabolic activity of the
culture. A simplified metabolic model of ABE fermentation
was applied that included all key branch metabolites (acetyl-
CoA, acetoacetyl-CoA and butyryl-CoA) and the major non-
gaseous fermentation products. Assuming a quasi-steady
state, intermediary steps between those metabolites were
merged into a single conversion step. In contrast to the dy-
namic batch culture models discussed above, additional bio-
logical data based on proteome analyses were taken into
consideration.

The first model published by Haus et al. (2011) studied the
observed pH-induced changes in gene expression with a focus
on the two steady states, i.e. at pH 5.7 and pH 4.5. Because
previous experimental studies (Janssen et al. 2010; Grimmler
et al. 2011) observed no significant changes in the cellular
abundance of acid-forming proteins at acidogenic (pH 5.7)
and solventogenic (pH 4.5) steady states, only the synthesis
of solvent-forming proteins was assumed to be coupled to a
pH-dependent switching function. A comparison of numerical
simulations of forward and reverse shift experiments con-
firmed that the pH-induced metabolic switch involves an
adaption of the proteomic composition, notably solvent-
forming proteins, with clostridial cells promoting either acid
or solvent formation.

Furthermore, the authors used their model to investigate the
effects of targeted single gene induction, including upregula-
tion and downregulation, on solvent formation at steady state.
This numerical analysis found that the regulation of a single
solvent-forming gene is insufficient to significantly increase
butanol formation. For instance, the model predicted that bu-
tanol production cannot be markedly improved by simply
overexpressing the bdhA/B (butanol dehydrogenase) genes.
Interestingly, considerable upregulation of adhE1, believed
to be involved in the formation of both ethanol and butanol,
was predicted to have a detrimental effect on formation of the
latter, because formation of ethanol was preferred instead.
However, a slight overexpression was predicted to have a
positive effect on butanol formation. This result indicated that
traditional sensitivity analysis focussing only on small
changes might be misleading. Moreover, it suggested that
successful metabolic engineering of the ABE fermentation
network might rely on tightly controlled overexpression and
underexpression of the genes involved.

However, while this first model could explain the observed
differences between acidogenic and solventogenic cells, it
failed to reproduce the experimentally observed transition dy-
namics between the two metabolic steady states.

Thorn et al. (2013) therefore extended the model by also
considering pH-dependent sporulation, the assumption being
that acid-forming cells sporulate in response to the sudden
drop in culture pH, resulting in metabolically inactive cells.
This improved the fit to experimental data, although an opti-
mal fit was only achieved for unrealistically large proportions
of sporulating cells. Another focus of this investigation was on
parameter estimation for ABE fermentation and how it could
be improved by additional experimental data. This analysis
revealed the need for quantitative experimental data for inter-
nal metabolites, in particular branch metabolites and reactions
mediated by CtfAB CoA transferase.

Motivated by the first model’s (Haus et al. 2011) incapacity
to accurately reproduce the transition between acid- and
solvent-forming steady states, a systematic re-analysis of the
dynamic shift experiments was conducted by Millat et al.
(2013a). As a result, the authors developed a workflow for
data analysis and data processing of pH shift experiments in
continuous culture. A key point of this workflow was the
analysis and representation of the measured optical density
using a phenomenological fitting function. A significant but
transient drop in OD during the metabolic transition has been
consistently observed in forward shift experiments (Janssen
et al. 2010; Grupe and Gottschalk 1992; Dürre et al. 1995).
In Millat et al. (2013a), the authors interpreted this as indica-
tive of a shift from an acidogenic to a solventogenic popula-
tion which significantly differ in their transcriptomic, proteo-
mic and, thus, metabolomic profiles.

As a consequence, the new shift model developed byMillat
et al. (2013a) considered two subpopulations with distinct
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metabolic activity and assumed that acidogenic cells stop
growing when the pH falls below 5.2 to 5.1 (Millat et al.
2013b) while, simultaneously, the solvent-forming cells in-
crease in numbers and eventually establish a solventogenic
culture. This pH-dependent growth is coupled to an updated
metabolic model which takes into account the experimentally
observed differential antagonistic expression of the bifunc-
tional alcohol/aldehyde dehydrogenases AdhE1 and AdhE2
(Janssen et al. 2010; Grimmler et al. 2011). Furthermore, ki-
netic regulation was considered for those enzymes that are
known to have a significant pH-dependent specific activity,
notably acetate kinase, butyrate kinase and acetoacetate decar-
boxylase (Andersch et al. 1983; Ho et al. 2009).

Due to the consideration of multiple levels of biological
organization, this model much better explained the experi-
mental data obtained for the forward-shift experiments. In
particular, it raised the question of whether the previously
assumed homologous nature of ABE fermentation should be
reconsidered.

Model-derived formation rates for acetate and butyrate in
forward-shift experiments suggested that there is a significant
re-assimilation activity regarding butyrate, but not for acetate.
This agrees with results obtained for batch cultures
(Mermelstein et al. 1993) but is in contrast to biochemical
studies on CtfAB CoA transferase (Hartmanis et al. 1984)
which showed a higher activity of this enzyme with acetate.
Moreover, the model required that few solventogenic cells
exhibit an extremely high assimilation activity, because con-
siderable butyrate uptake occurred at a stage when the postu-
lated solventogenic subpopulation was still small.

These issues were addressed in a follow-up study
(Millat et al. 2014), which examined the behaviour of a
ctfA mutant using the same experimental setup and model
as previously for the wild type. As expected, this mutant
was incapable of forming acetone but it still re-assimilated
butyrate. Using the model established in Millat et al.
(2013b), but assuming an inactive CoA-transferase, it
was shown that pH-dependent growth and continuous
wash-out alone were insufficient to reproduce the time
course observed for butyrate whereas predictions agreed
well with the observed acetate concentrations.

Butyrate assimilation in the absence of CoA transferase
could not be explained without the addition of a pathway that
converts butyrate to butyryl-CoA into the model. The thus
updated model (Millat et al. 2014) predicted this mechanism
to be pH-dependent, shifting the equilibrium towards butyryl-
CoA formation for low pH levels. Additionally, the calculated
relative change in butyrate formation rate agreed well with the
relative changes in specific activity of butyrate kinase reported
in Andersch et al. (1983). Thus, it was concluded that a CoA
transferase-independent mechanism is indeed at work and re-
sponsible for the assimilation of butyrate, but not acetate, dur-
ing the metabolic shift.

Unfortunately, these findings were later misinterpreted in
recent publications (Croux et al. 2016; Yu et al. 2015).
Contrary to statements made in Croux et al. (2016) and Yu
et al. (2015), the work undertaken in Millat et al. (2014)
provides no proof of the roles of butyrate kinase (Buk) and
phosphotransbutyrylase (Ptb) in butyrate re-assimilation, as it
allowed for other mechanisms. Indeed, the authors of Millat
et al. (2014) proposed the combined action of aldehyde/
ferredoxin oxidoreductase and butanol dehydrogenase as a
possible alternative.

Very recently, Thorn and King (2016) applied the
workflow and model introduced in Millat et al. (2013a) on
data reported for a reverse shift experiment (Haus et al.
2011), in which the external pH of a continuous culture was
shifted from a low level (pH 4.5) to a higher level (pH 5.7).
Published accounts of this type of shift experiment are rare,
and thus, substantially less information is available. Since
Haus et al. (2011) provided no optical density data, Thorn
and King assumed that the acid- and solvent-forming subpop-
ulations exhibit a behaviour that mirrors the forward shift.
After re-estimating the model parameters for a reverse shift,
the authors found that a constant amount of CtfA/B CoA
transferase provided the best fit to the available data, although
this contradicted the notion of CtfAB as a solventogenic
enzyme.

In summary, modelling ABE fermentation for continuous
cultures has corroborated the view that the metabolic shift in
solventogenic clostridia is orchestrated by a complex network
of interactions involving all levels of biological organization.
While the existing models consider regulation at the kinetic,
cellular and population level in a phenomenological manner,
they do not establish the causal relations that exist between
them. For instance, the observed drop in culture pH is de-
scribed by a mathematical function independent of the cellular
metabolic activity which actually causes it. Furthermore,
while these models assume co-existing acidogenic and
solventogenic populations, they provide no insight as to
how, when and why these emerge.

Conclusions and outlook

Modelling ABE fermentation has a 30-year history, starting in
1984 with the very first application of flux balance analysis to
a structural model. Since then, mathematical modelling has
increasingly contributed to our understanding of clostridial
ABE fermentation. Research activities in this area have pri-
marily focussed on two aspects, first to understand the regu-
lation and cellular alterations resulting in the reversible shift
from acidogenesis to solventogenesis and, second, to improve
production of butanol and acetone. The latter includes biore-
actor and process design, which were not considered in this
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review, but also genetic modification and metabolic
engineering.

In accordance with experimental data obtained for batch
and continuous cultures, structural and dynamic models have
confirmed that the transition from acidogenesis to
solventogenesis requires a drastic shift in the activity of the
different fermentation pathways involved. This shift is accom-
panied by considerable changes in cellular composition, sug-
gesting that this adaption cannot solely be explained by kinetic
regulations, e.g. the inhibitory effects of metabolic products.
Recent experiments have shown that transcriptome, proteome
and metabolome are linked in a complex, sometimes non-in-
tuitive, manner that is only incompletely understood. These
interactions will have to be established in upcoming models,
and this very likely requires better knowledge of the kinetic
properties of the enzymes involved.

Furthermore, the experimentally observed dependence of
product spectrum and temporal behaviour of clostridial ABE
fermentation upon substrate and intracellular pools of ATP
and NAD(P)H offers challenges for future models.
Stoichiometric considerations already indicate that balancing
substrate and products results in different product yield de-
pending on howmany atoms of carbon, hydrogen and oxygen
(often described as state of reduction) a substrate is able to
provide (Papoutsakis 1984; Johnson et al. 1931). An under-
standing of the different behaviour observed for sugars with
identical chemical formulae (e.g. glucose, mannose, fructose)
is likely to require the consideration and comparison of kinetic
and thermodynamic properties at all levels of cellular
organization.

Interestingly, some of the modelling attempts outlined
above challenge the classical view of ABE fermentation. For
instance, recent theoretical findings suggest that the metabolic
shift might be considered a heterogeneous phenomenon,
where acidogenic and solventogenic (and potentially other)
phenotypes represent different stable states of the metabolic
network (Millat et al. 2013a; Senger and Papoutsakis 2008b;
Kumar et al. 2014). If so, the observed metabolite spectrum
may be calculated as the sum over the metabolic activity of
those phenotypes.

dx1
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dt
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Here, the subscript p denotes different phenotypes, which
might represent one of the following two principal phenotypic
classes. First are ‘multistable’ phenotypes, where cells popu-
late different optima of an identical network. This behaviour is
well known in the stochastic theory of multistable systems
(Ebeling and Sokolov 2005; van Kampen 2007; Schlögl
1972). Most of the existing structural models, including

genome-scale models, have so far neglected this feature, but
would in principle be capable of identifying multiple optima
and their flux distributions (Wintermute et al. 2013). Second
are ‘selective’ phenotypes, where cellular regulation activates
(or deactivates) only parts of the network. Thus, these pheno-
types differ in their network structure and stoichiometric ma-
trices. Mathematical models of bacterial metabolisms often
consider such changes in network structure by manually
employing switching functions or by assuming distinct phe-
notypes. Note that selective phenotypes might also exhibit
multiple stable solutions.

Indeed, over the years, experimental evidence has repeat-
edly emerged to suggest that ABE fermentation may involve
heterogeneous populations. For instance, for continuous cul-
tures, several groups observed oscillations in the levels of
acids and solvents (Clarke et al. 1988; Roos et al. 1985) or
the redox potential (Kim and Kim 1988; Grupe and
Gottschalk 1992). Furthermore, spectroscopic single-cell
analysis using Raman microscopy implied that cells growing
in batch culture also exhibit heterogenic features (Schuster
et al. 2000b).

Thus, the identification and characterization of phenotypi-
cally different subpopulations is an important task for future
studies, both experimental and theoretical. The latter might
reveal the mechanisms behind the emergence of such pheno-
types and their relative abundance in mixed populations as a
consequence of their differing abilities to conserve energy
under the prevailing conditions. Shifting the ratio in heteroge-
neous population towards desirable (e.g. butanol-producing)
phenotypes might offer an interesting alternative to the tradi-
tional engineering of metabolic networks.

Considering ABE fermentation as a multistable system
may also reveal an interesting feature not commonly associat-
ed with metabolic processes. In a multistable system, the sys-
tem’s history can affect or even determine its future develop-
mental options and capabilities. Thus, a sequence of metabolic
states might be interpreted as developmental process (e.g.,
Veening et al. 2008; Ackermann 2015).

The existence of a solventogenic phenotype (or, more like-
ly, phenotypes (Schuster et al. 2000b; González-Peñas et al.
2015; Tracy et al. 2008)), which can grow and divide, would
challenge the long-standing notion of a non-growing
solventogenic state. If confirmed, solventogenic metabolism
would be subject to constraints different to those applied in
some of the existing models. Models might need to distin-
guish between acidogenesis, alcohologenesis (Girbal et al.
1995; Meyer et al. 1986; Vasconcelos et al. 1994),
solventogenesis and potentially other states.

Despite the substantial contribution of mathematical
models to our understanding of clostridial acetone-butanol-
ethanol formation, they are yet unable to pinpoint definitive
causes and mechanisms. It is evident that an integrated multi-
level approach, including transcriptomics, proteomics and
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metabolomics, as well as information regarding the
environoment, kinetic regulation and population heterogene-
ity, will be required to shed light on the process. A focus on the
individual ‘objectives’ of cells and populations might also
prove beneficial. Doing so will bring about new experimental
and theoretical approaches, hopefully leading to a sustainable
biotechnological process in the future.
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