81 research outputs found

    Strangeness production time and the K+/pi+ horn

    Get PDF
    We construct a hadronic kinetic model which describes production of strange particles in ultrarelativistic nuclear collisions in the energy domain of SPS. We test this model on description of the sharp peak in the excitation function of multiplicity ratio K+/pi+ and demonstrate that hadronic model reproduces these data rather well. The model thus must be tested on other types of data in order to verify the hypothesis that deconfinement sets in at lowest SPS energies.Comment: proceedings of Hot Quarks 0

    Subthreshold phi-meson production in heavy-ion collisions

    Full text link
    Within a transport code of BUU type the production of phi-mesons in the reactions Ni+Ni at 1.93 AGeV and Ru+Ru at 1.69 AGeV is studied. New elementary reaction channels rho+N(Delta) to phi+N and pi+N(1520) to phi+N are included. In spite of a substantial increase of the \phi multiplicities by these channels the results stay below the tentative numbers extracted from experimental data.Comment: 17 pages(LaTeX), two new figures adde

    Thermal Hadron Production in High Energy Heavy Ion Collisions

    Full text link
    We provide a method to test if hadrons produced in high energy heavy ion collisions were emitted at freeze-out from an equilibrium hadron gas. Our considerations are based on an ideal gas at fixed temperature TfT_f, baryon number density nBn_B, and vanishing total strangeness. The constituents of this gas are all hadron resonances up to a mass of 2 GeV; they are taken to decay according to the experimentally observed branching ratios. The ratios of the various resulting hadron production rates are tabulated as functions of TfT_f and nBn_B. These tables can be used for the equilibration analysis of any heavy ion data; we illustrate this for some specific cases.Comment: 12 pages (not included :13 figures + tables) report CERN-TH 6523/92 and Bielefeld preprint BI-TP 92/0

    Coulomb Effect: A Possible Probe for the Evolution of Hadronic Matter

    Get PDF
    Electromagnetic field produced in high-energy heavy-ion collisions contains much useful information, because the field can be directly related to the motion of the matter in the whole stage of the reaction. One can divide the total electromagnetic field into three parts, i.e., the contributions from the incident nuclei, non-participating nucleons and charged fluid, the latter consisting of strongly interacting hadrons or quarks. Parametrizing the space-time evolution of the charged fluid based on hydrodynamic model, we study the development of the electromagnetic field which accompanies the high-energy heavy-ion collisions. We found that the incident nuclei bring a rather strong electromagnetic field to the interaction region of hadrons or quarks over a few fm after the collision. On the other hand, the observed charged hadrons' spectra are mostly affected (Coulomb effect) by the field of the charged fluid. We compare the result of our model with experimental data and found that the model reproduces them well. The pion yield ratio pi^-/pi+ at a RHIC energy, Au+Au 100+100 GeV/nucleon, is also predicted.Comment: 23 pages, RevTex, 19 eps figures, revised versio

    Transport theories for heavy ion collisions in the 1 AGeV regime

    Get PDF
    We compare multiplicities as well as rapidity and transverse momentum distributions of protons, pions and kaons calculated within presently available transport approaches for heavy ion collisions around 1 AGeV. For this purpose, three reactions have been selected: Au+Au at 1 and 1.48 AGeV and Ni+Ni at 1.93 AGeV

    Collective flow in central Au-Au collisions at 150, 250 and 400 A MeV

    Get PDF
    Radial collective flow and thermalization are studied in gold on gold collisions at 150, 250 and 400 A MeV bombarding energies with a relativistically covariant formulation of a QMD code. We find that radial flow and "thermal" energies calculated for all the charged fragments agree reasonably with the experimental values. The experimental hardware filter at small angles used in the FOPI experiments at higher energies selects mainly the thermalized particles.Comment: 4 pages with 4 EPS figures included. Version accepted for publication in Phys. Rev.

    Analysis of proton-induced fragment production cross sections by the Quantum Molecular Dynamics plus Statistical Decay Model

    Get PDF
    The production cross sections of various fragments from proton-induced reactions on 56^{56}Fe and 27^{27}Al have been analyzed by the Quantum Molecular Dynamics (QMD) plus Statistical Decay Model (SDM). It was found that the mass and charge distributions calculated with and without the statistical decay have very different shapes. These results also depend strongly on the impact parameter, showing an importance of the dynamical treatment as realized by the QMD approach. The calculated results were compared with experimental data in the energy region from 50 MeV to 5 GeV. The QMD+SDM calculation could reproduce the production cross sections of the light clusters and intermediate-mass to heavy fragments in a good accuracy. The production cross section of 7^{7}Be was, however, underpredicted by approximately 2 orders of magnitude, showing the necessity of another reaction mechanism not taken into account in the present model.Comment: 12 pages, Latex is used, 6 Postscript figures are available by request from [email protected]

    The role of three-body collisions in phi-meson production processes near threshold

    Get PDF
    The amplitude of subthreshold phi-meson production is calculated using dominant tree-level diagrams for three-body collisions. It is shown that the production can overwhelmingly be described by two-step processes. The effect of the genuine three-body contribution (i.e. the contribution which cannot be factorized) is discussed. The production rate of phi-mesons is presented for proton induced reactions on carbon.Comment: 19 page

    Thermal photons as a measure for the rapidity dependence of the temperature

    Get PDF
    The rapidity distribution of thermal photons produced in Pb+Pb collisions at CERN-SPS energies is calculated within scaling and three-fluid hydrodynamics. It is shown that these scenarios lead to very different rapidity spectra. A measurement of the rapidity dependence of photon radiation can give cleaner insight into the reaction dynamics than pion spectra, especially into the rapidity dependence of the temperature.Comment: 3 Figure

    Spectroscopy of resonance decays in high-energy heavy-ion collisions

    Full text link
    Invariant mass distributions of the hadronic decay products from resonances formed in relativistic heavy ion collision (RHIC) experiments are investigated with a view to disentangle the effects of thermal motion and the phase space of decay products from those of intrinsic changes in the structure of resonances at the freeze-out conditions. Analytic results of peak mass shifts for the cases of both equal and unequal mass decay products are derived. The shift is expressed in terms of the peak mass and width of the vacuum or medium-modified spectral functions and temperature. Examples of expected shifts in meson (e.g., rho, omega, and sigma) and baryon (e.g., Delta) resonances that are helpful to interpret recent RHIC measurements at BNL are provided. Although significant downward mass shifts are caused by widened widths of the ρ\rho-meson in medium, a downward shift of at least 50 MeV in its intrinsic mass is required to account for the reported downward shift of 60-70 MeV in the peak of the rho-invariant mass distribution. An observed downward shift from the vacuum peak value of the Delta distinctively signals a significant downward shift in its intrinsic peak mass, since unlike for the rho-meson, phase space functions produce an upward shift for the Delta isobar.Comment: published version with slight change of title and some typos corrected, 12 pages, 5 figure
    corecore