1,289 research outputs found
Observation of Two New N* Peaks in J/psi -> and Decays
The system in decays of is limited to be
isospin 1/2 by isospin conservation. This provides a big advantage in studying
compared with and experiments which mix
isospin 1/2 and 3/2 for the system. Using 58 million decays
collected with the Beijing Electron Positron Collider, more than 100 thousand
events are obtained. Besides two well known
peaks at 1500 MeV and 1670 MeV, there are two new, clear peaks in
the invariant mass spectrum around 1360 MeV and 2030 MeV. They are the
first direct observation of the peak and a long-sought "missing"
peak above 2 GeV in the invariant mass spectrum. A simple
Breit-Wigner fit gives the mass and width for the peak as MeV and MeV, and for the new peak above 2 GeV
as MeV and MeV, respectively
Non-Markovian dynamics for an open two-level system without rotating wave approximation: Indivisibility versus backflow of information
By use of the two measures presented recently, the indivisibility and the
backflow of information, we study the non-Markovianity of the dynamics for a
two-level system interacting with a zero-temperature structured environment
without using rotating wave approximation (RWA). In the limit of weak coupling
between the system and the reservoir, and by expanding the time-convolutionless
(TCL) generator to the forth order with respect to the coupling strength, the
time-local non-Markovian master equation for the reduced state of the system is
derived. Under the secular approximation, the exact analytic solution is
obtained and the sufficient and necessary conditions for the indivisibility and
the backflow of information for the system dynamics are presented. In the more
general case, we investigate numerically the properties of the two measures for
the case of Lorentzian reservoir. Our results show the importance of the
counter-rotating terms to the short-time-scale non-Markovian behavior of the
system dynamics, further expose the relations between the two measures and
their rationality as non-Markovian measures. Finally, the complete positivity
of the dynamics of the considered system is discussed
Evaluating k-nearest neighbor (kNN) imputation models for species-level aboveground forest biomass mapping in Northeast China
Quantifying spatially explicit or pixel-level aboveground forest biomass (AFB) across large regions is critical for measuring forest carbon sequestration capacity, assessing forest carbon balance, and revealing changes in the structure and function of forest ecosystems. When AFB is measured at the species level using widely available remote sensing data, regional changes in forest composition can readily be monitored. In this study, wall-to-wall maps of species-level AFB were generated for forests in Northeast China by integrating forest inventory data with Moderate Resolution Imaging Spectroradiometer (MODIS) images and environmental variables through applying the optimal k-nearest neighbor (kNN) imputation model. By comparing the prediction accuracy of 630 kNN models, we found that the models with random forest (RF) as the distance metric showed the highest accuracy. Compared to the use of single-month MODIS data for September, there was no appreciable improvement for the estimation accuracy of species-level AFB by using multi-month MODIS data. When k > 7, the accuracy improvement of the RF-based kNN models using the single MODIS predictors for September was essentially negligible. Therefore, the kNN model using the RF distance metric, single-month (September) MODIS predictors and k = 7 was the optimal model to impute the species-level AFB for entire Northeast China. Our imputation results showed that average AFB of all species over Northeast China was 101.98 Mg/ha around 2000. Among 17 widespread species, larch was most dominant, with the largest AFB (20.88 Mg/ha), followed by white birch (13.84 Mg/ha). Amur corktree and willow had low AFB (0.91 and 0.96 Mg/ha, respectively). Environmental variables (e.g., climate and topography) had strong relationships with species-level AFB. By integrating forest inventory data and remote sensing data with complete spatial coverage using the optimal kNN model, we successfully mapped the AFB distribution of the 17 tree species over Northeast China. We also evaluated the accuracy of AFB at different spatial scales. The AFB estimation accuracy significantly improved from stand level up to the ecotype level, indicating that the AFB maps generated from this study are more suitable to apply to forest ecosystem models (e.g., LINKAGES) which require species-level attributes at the ecotype scale
Search for Invisible Decays of and in and
Using a data sample of decays collected with the BES
II detector at the BEPC, searches for invisible decays of and
in to and are performed.
The signals, which are reconstructed in final states, are used
to tag the and decays. No signals are found for the
invisible decays of either or , and upper limits at the 90%
confidence level are determined to be for the ratio
and for . These are the first
searches for and decays into invisible final states.Comment: 5 pages, 4 figures; Added references, Corrected typo
Anomalous in-plane magnetoresistance of electron-doped cuprate La2âxCexCuO4±Ύ
We report systematic in-plane magnetoresistance measurements on the electron-doped cuprate La2âxCexCuO4±Ύ thin films as a function of Ce doping and oxygen content in the magnetic field up to 14T. A crossover from negative to positive magnetoresistance occurs between the doping level x = 0.07 and 0.08. Above x = 0.08, the positive magnetoresistance effect appears, and is almost
indiscernible at x = 0.15. By tuning the oxygen content, the as-grown samples show negative magnetoresistance effect, whereas the optimally annealed ones display positive magnetoresistance effect at the doping level x = 0.15. Intriguingly, a linear-field dependence of in-plane magnetoresistance is observed at the underdoping level x = 0.06, the optimal doping level x = 0.1 and slightly overdoping level x = 0.11. These anomalies of in-plane magnetoresistance may be related to the intrinsic inhomogeneity in the cuprates, which is discussed in the framework of network model
Muon-spin rotation and magnetization studies of chemical and hydrostatic pressure effects in EuFe_{2}(As_{1-x}P_{x})_{2}
The magnetic phase diagram of EuFe(AsP) was
investigated by means of magnetization and muon-spin rotation studies as a
function of chemical (isovalent substitution of As by P) and hydrostatic
pressure. The magnetic phase diagrams of the magnetic ordering of the Eu and Fe
spins with respect to P content and hydrostatic pressure are determined and
discussed. The present investigations reveal that the magnetic coupling between
the Eu and the Fe sublattices strongly depends on chemical and hydrostatic
pressure. It is found that chemical and hydrostatic pressure have a similar
effect on the Eu and Fe magnetic order.Comment: 11 pages, 10 figure
Stepwise formation of heteronuclear coordination networks based on quadruple-bonded dimolybdenum units containing formamidinate ligands
Reactions of [Mo2(4-pyf)4] (4-Hpyf = 4-pyridylformamidine) with
HgX2 (X = Cl, Br and I) afforded the first 2D and 3D heteronuclear
coordination networks based on quadruple-bonded dimolybdenum
units
Pseudo Goldstone Bosons Phenomenology in Minimal Walking Technicolor
We construct the non-linear realized Lagrangian for the Goldstone Bosons
associated to the breaking pattern of SU(4) to SO(4). This pattern is expected
to occur in any Technicolor extension of the standard model featuring two Dirac
fermions transforming according to real representations of the underlying gauge
group. We concentrate on the Minimal Walking Technicolor quantum number
assignments with respect to the standard model symmetries. We demonstrate that
for, any choice of the quantum numbers, consistent with gauge and Witten
anomalies the spectrum of the pseudo Goldstone Bosons contains electrically
doubly charged states which can be discovered at the Large Hadron Collider.Comment: 25 pages, 5 figure
Mass measurements of neutron-deficient Y, Zr, and Nb isotopes and their impact on rp and Îœp nucleosynthesis processes
© 2018 The Authors. Published by Elsevier B.V. This manuscript is made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0). For further details please see: https://creativecommons.org/licenses/by-nc-nd/4.0/Using isochronous mass spectrometry at the experimental storage ring CSRe in Lanzhou, the masses of 82Zr and 84Nb were measured for the first time with an uncertainty of âŒ10 keV, and the masses of 79Y, 81Zr, and 83Nb were re-determined with a higher precision. The latter are significantly less bound than their literature values. Our new and accurate masses remove the irregularities of the mass surface in this region of the nuclear chart. Our results do not support the predicted island of pronounced low α separation energies for neutron-deficient Mo and Tc isotopes, making the formation of ZrâNb cycle in the rp-process unlikely. The new proton separation energy of 83Nb was determined to be 490(400) keV smaller than that in the Atomic Mass Evaluation 2012. This partly removes the overproduction of the p-nucleus 84Sr relative to the neutron-deficient molybdenum isotopes in the previous Îœp-process simulations.Peer reviewe
Partial Wave Analysis of
BES data on are presented. The
contribution peaks strongly near threshold. It is fitted with a
broad resonance with mass MeV, width MeV. A broad resonance peaking at 2020 MeV is also required
with width MeV. There is further evidence for a component
peaking at 2.55 GeV. The non- contribution is close to phase
space; it peaks at 2.6 GeV and is very different from .Comment: 15 pages, 6 figures, 1 table, Submitted to PL
- âŠ