16 research outputs found

    A consistent analysis of (e,e'p) and (d,3He) experiments

    Full text link
    The apparent discrepancy between spectroscopic factors obtained in (e,e'p) and (d,3He) experiments is investigated. This is performed first for 48Ca(e,e'p) and 48Ca(d,3He) experiments and then for other nuclei. It is shown that the discrepancy disappears if the (d,3He) experiments are re-analyzed with a non-local finite range DWBA analysis with a bound-state wave function that is obtained from (e,e'p) experiments.Comment: 23 pages, 7 figure

    Forward modeling of collective Thomson scattering for Wendelstein 7-X plasmas: Electrostatic approximation

    Get PDF
    In this paper, we present a method for numerical computation of collective Thomson scattering (CTS). We developed a forward model, eCTS, in the electrostatic approximation and benchmarked it against a full electromagnetic model. Differences between the electrostatic and the electromagnetic models are discussed. The sensitivity of the results to the ion temperature and the plasma composition is demonstrated. We integrated the model into the Bayesian data analysis framework Minerva and used it for the analysis of noisy synthetic data sets produced by a full electromagnetic model. It is shown that eCTS can be used for the inference of the bulk ion temperature. The model has been used to infer the bulk ion temperature from the first CTS measurements on Wendelstein 7-X

    Towards a new image processing system at Wendelstein 7-X: From spatial calibration to characterization of thermal events

    Get PDF
    Wendelstein 7-X (W7-X) is the most advanced fusion experiment in the stellarator line and is aimed at proving that the stellarator concept is suitable for a fusion reactor. One of the most important issues for fusion reactors is the monitoring of plasma facing components when exposed to very high heat loads, through the use of visible and infrared (IR) cameras. In this paper, a new image processing system for the analysis of the strike lines on the inboard limiters from the first W7-X experimental campaign is presented. This system builds a model of the IR cameras through the use of spatial calibration techniques, helping to characterize the strike lines by using the information given by real spatial coordinates of each pixel. The characterization of the strike lines is made in terms of position, size, and shape, after projecting the camera image in a 2D grid which tries to preserve the curvilinear surface distances between points. The description of the strike-line shape is made by means of the Fourier Descriptors

    Hydration behavior and dynamics of water molecules in graphite oxide

    No full text
    In contrast to graphite intercalation compounds, graphite oxide GO is hydrophilic. However, the information about the mobility of the water molecules is still sparse. We show in this report that the degree of hydration and the kinetics of water uptake depend crucially on the preparation and aging conditions. The best sample we have ever got shows layer distances of 8, 9 and 11.5 at relative humidities of 45, 75 and 100 , respectively. With time of flight TOF neutron scattering V3 NEAT spectrometer diffusion processes for rotation and translation have been investigated in the temperature range 220 320 K with an energy resolution of 93 amp; 956;eV. Quasi elastic scattering was observed for all temperatures. Three types of motion can be sorted out. The first one is a translational motion of water molecules in pores between the GO particles for samples equilibrated at 100 relative humidity. Samples equilibrated at 45 and 75 relative humidity do not show this type of water. They exhibit two types of localized motions with different activation energies. We try to assign one type of these motions to confined water molecules encapsulated in the interlayer space between the functional groups attached to the carbon gri
    corecore