239 research outputs found

    Some Applications of the Extended Bendixson-Dulac Theorem

    Get PDF
    During the last years the authors have studied the number of limit cycles of several families of planar vector fields. The common tool has been the use of an extended version of the celebrated Bendixson-Dulac Theorem. The aim of this work is to present an unified approach of some of these results, together with their corresponding proofs. We also provide several applications.Comment: 19 pages, 3 figure

    Smoking-gun signatures of little Higgs models

    Full text link
    Little Higgs models predict new gauge bosons, fermions and scalars at the TeV scale that stabilize the Higgs mass against quadratically divergent one-loop radiative corrections. We categorize the many little Higgs models into two classes based on the structure of the extended electroweak gauge group and examine the experimental signatures that identify the little Higgs mechanism in addition to those that identify the particular little Higgs model. We find that by examining the properties of the new heavy fermion(s) at the LHC, one can distinguish the structure of the top quark mass generation mechanism and test the little Higgs mechanism in the top sector. Similarly, by studying the couplings of the new gauge bosons to the light Higgs boson and to the Standard Model fermions, one can confirm the little Higgs mechanism and determine the structure of the extended electroweak gauge group.Comment: 59 pages, 10 figures. v2: refs added, typos fixed, JHEP versio

    The seesaw mechanism at TeV scale in the 3-3-1 model with right-handed neutrinos

    Full text link
    We implement the seesaw mechanism in the 3-3-1 model with right-handed neutrinos. This is accomplished by the introduction of a scalar sextet into the model and the spontaneous violation of the lepton number. We identify the Majoron as a singlet under SUL(2)⊗UY(1)SU_L(2)\otimes U_Y(1) symmetry, which makes it safe under the current bounds imposed by electroweak data. The main result of this work is that the seesaw mechanism works already at TeV scale with the outcome that the right-handed neutrino masses lie in the electroweak scale, in the range from MeV to tens of GeV. This window provides a great opportunity to test their appearance at current detectors, though when we contrast our results with some previous analysis concerning detection sensitivity at LHC, we conclude that further work is needed in order to validate this search.Comment: about 13 pages, no figure

    Chromomagnetic Dipole Moment of the Top Quark Revisited

    Full text link
    We study the complete one-loop contributions to the chromagnetic dipole moment ΔÎș\Delta\kappa of the top quark in the Standard Model, two Higgs doublet models, topcolor assited technicolor models (TC2), 331 models and extended models with a single extra dimension. We find that the SM predicts ΔÎș=−0.056\Delta\kappa = - 0.056 and that the predictions of the other models are also consitent with the constraints imposed on ΔÎș\Delta\kappa by low-energy precision measurements.Comment: 20 pages, 5 figures, Updat

    Supersymmetric effects in top quark decay into polarized W-boson

    Full text link
    We investigate the one-loop supersymmetric QCD (SUSY-QCD) and electroweak (SUSY-EW) corrections to the top quark decay into a b-quark and a longitudinal or transverse W-boson. The corrections are presented in terms of the longitudinal ratio \Gamma(t-->W_L b)/\Gamma(t--> W b) and the transverse ratio \Gamma(t-->W_- b)/\Gamma(t--> W b). In most of the parameter space, both SUSY-QCD and SUSY-EW corrections to these ratios are found to be less than 1% in magnitude and they tend to have opposite signs. The corrections to the total width \Gamma(t-->W b) are also presented for comparison with the existing results in the literature. We find that our SUSY-EW corrections to the total width differ significantly from previous studies: the previous studies give a large correction of more than 10% in magnitude for a large part of the parameter space while our results reach only few percent at most.Comment: Version in PRD (explanation and refs added

    A Coupled Electrical-Thermal-Mechanical Modeling of Gleeble Tensile Tests for Ultra-High-Strength (UHS) Steel at a High Temperature

    No full text
    International audienceA coupled electrical-thermal-mechanical model is proposed aimed at the numerical modeling of Gleeble tension tests at a high temperature. A multidomain, multifield coupling resolution strategy is used for the solution of electrical, energy, and momentum conservation equations by means of the finite element method. Its application to ultra-high-strength steel is considered. After calibration with instrumented experiments, numerical results reveal that significant thermal gradients prevail in Gleeble tensile steel specimen in both axial and radial directions. Such gradients lead to the heterogeneous deformation of the specimen, which is a major difficulty for simple identification techniques of constitutive parameters, based on direct estimations of strain, strain rate, and stress. The proposed direct finite element coupled model can be viewed as an important achievement for subsequent inverse identification methods, which should be used to identify constitutive parameters for steel at a high temperature in the solid state and in the mushy state

    Infrared and ultraviolet cutoffs of quantum field theory

    Get PDF
    Quantum gravity arguments and the entropy bound for effective field theories proposed in PRL 82, 4971 (1999) lead to consider two correlated scales which parametrize departures from relativistic quantum field theory at low and high energies. A simple estimate of their possible phenomenological implications leads to identify a scale of around 100 TeV as an upper limit on the domain of validity of a quantum field theory description of Nature. This fact agrees with recent theoretical developments in large extra dimensions. Phenomenological consequences in the beta-decay spectrum and cosmic ray physics associated to possible Lorentz invariance violations induced by the infrared scale are discussed. It is also suggested that this scale might produce new unexpected effects at the quantum level.Comment: 5 pages, no figures; general discussion improved, main results unchanged. Version to appear in PR

    Deformation-induced microstructural banding in TRIP steels

    Get PDF
    Microstructure inhomogeneities can strongly influence the mechanical properties of advanced high-strength steels in a detrimental manner. This study of a transformation-induced plasticity (TRIP) steel investigates the effect of pre-existing contiguous grain boundary networks (CGBNs) of hard second-phases and shows how these develop into bands during tensile testing using in situ observations in conjunction with digital image correlation (DIC). The bands form by the lateral contraction of the soft ferrite matrix, which rotates and displaces the CGBNs of second-phases and the individual features within them to become aligned with the loading direction. The more extensive pre-existing CGBNs that were before the deformation already aligned with the loading direction are the most critical microstructural feature for damage initiation and propagation. They induce micro-void formation between the hard second-phases along them, which coalesce and develop into long macroscopic fissures. The hard phases, retained austenite and martensite, were not differentiated as it was found that the individual phases do not play a role in the formation of these bands. It is suggested that minimizing the presence of CGBNs of hard second-phases in the initial microstructure will increase the formability

    Search for the lepton flavor violating decay A^0/H^0 --> tau^{+/-} mu^{+/-} at hadron colliders

    Full text link
    In the two Higgs doublet model type III and in several other extensions of the Standard Model, there are no discrete symmetries that suppress flavor changing couplings at tree level. The experimental observation of the nu_mu -- nu_tau flavor oscillation may suggest the non-conservation of lepton number. This would lead to the decay of the type A^0/H^0 --> tau^{+/-} mu^{+/-}. We determine the present low energy limit on lepton flavor violating (LFV) couplings from the muon g-2 measurement and discuss the prospects for detecting lepton flavor violating decays at the TeVatron and at the Large Hadron Collider. The achievable bounds on the LFV coupling parameter lambda_{tau mu} are presented.Comment: 19 pages, 21 figures. Updated version takes into account the recent results on the muon g-2 measurements. Submitted to Phys. Rev. D. Added minor corrections from a refere

    Physics with the KLOE-2 experiment at the upgraded DAϕ\phiNE

    Get PDF
    Investigation at a ϕ\phi--factory can shed light on several debated issues in particle physics. We discuss: i) recent theoretical development and experimental progress in kaon physics relevant for the Standard Model tests in the flavor sector, ii) the sensitivity we can reach in probing CPT and Quantum Mechanics from time evolution of entangled kaon states, iii) the interest for improving on the present measurements of non-leptonic and radiative decays of kaons and eta/etaâ€Č^\prime mesons, iv) the contribution to understand the nature of light scalar mesons, and v) the opportunity to search for narrow di-lepton resonances suggested by recent models proposing a hidden dark-matter sector. We also report on the e+e−e^+ e^- physics in the continuum with the measurements of (multi)hadronic cross sections and the study of gamma gamma processes.Comment: 60 pages, 41 figures; added affiliation for one of the authors; added reference to section
    • 

    corecore