1,240 research outputs found

    Holographic injection locking of a broad area laser diode via a photorefractive thin-film device

    Get PDF
    We demonstrate locking of a high power broad area laser diode to a single frequency using holographic feedback from a photorefractive polymer thin-film device for the first time. A four-wave mixing setup is used to generate feedback for the broad area diode at the wavelength of the single frequency source (Ti:Sapphire laser) while the spatial distribution adapts to the preferred profile of the broad area diode. The result is an injection-locked broad area diode emitting with a linewidth comparable to the Ti:Sapphire laser

    Charge Symmetry Violation Corrections to Determination of the Weinberg Angle in Neutrino Reactions

    Get PDF
    We show that the correction to the Paschos-Wolfenstein relation associated with charge symmetry violation in the valence quark distributions is essentially model independent. It is proportional to a ratio of quark momenta that is independent of Q^2. This result provides a natural explanation of the surprisingly good agreement found between our earlier estimates within several different models. When applied to the recent NuTeV measurement, this effect significantly reduces the discrepancy with other determinations of the Weinberg angle.Comment: 7 pages, no figures; expanded discussion of N.ne.Z correction

    Extracting winning strategies in update games

    Get PDF
    This paper investigates algorithms for extracting winning strategies in two-player games played on nite graphs. We focus on a special class of games called update games. We present a procedure for extracting winning strategies in update games by constructing strategies explicitly. This is based on an algorithm that solves update games in quadratic time. We also show that solving update games with a bounded number of nondeterministic nodes takes linear time

    Perturbative and nonperturbative contributions to the strange quark asymmetry in the nucleon

    Full text link
    There are two mechanisms for the generation of an asymmetry between the strange and anti-strange quark distributions in the nucleon: nonperturbative contributions originating from nucleons fluctuating into virtual baryon-meson pairs such as ΛK\Lambda K and ΣK\Sigma K, and perturbative contributions arising from gluons splitting into strange and anti-strange quark pairs. While the nonperturbative contributions are dominant in the large-xx region, the perturbative contributions are more significant in the small-xx region. We calculate this asymmetry taking into account both nonperturbative and perturbative contributions, thus giving a more accurate evaluation of this asymmetry over the whole domain of xx. We find that the perturbative contributions are generally a few times larger in magnitude than the nonperturbative contributions, which suggests that the best region to detect this asymmetry experimentally is in the region 0.02<x<0.030.02 < x < 0.03. We find that the asymmetry may have more than one node, which is an effect that should be taken into account, e.g. for parameterizations of the strange and anti-strange quark distributions used in global analysis of parton distributions.Comment: 14 pages, 4 figures, figures comparing theoretical calculations with NNPDF global analysis added, accepted for publication in EPJ

    Flexible active compensation based on load conformity factors applied to non-sinusoidal and asymmetrical voltage conditions

    Get PDF
    This study proposes a flexible active power filter (APF) controller operating selectively to satisfy a set of desired load performance indices defined at the source side. The definition of such indices, and of the corresponding current references, is based on the orthogonal instantaneous current decomposition and conformity factors provided by the conservative power theory. This flexible approach can be applied to single- or three-phase APFs or other grid-tied converters, as those interfacing distributed generators in smart grids. The current controller is based on a modified hybrid P-type iterative learning controller which has shown good steady-state and dynamic performances. To validate the proposed approach, a three-phase four-wire APF connected to a non-linear and unbalanced load has been considered. Experimental results have been generated under ideal and non-ideal voltage sources, showing the effectiveness of the proposed flexible compensation scheme, even for weak grid scenarios

    Clovers for Minnesota

    Get PDF
    This archival publication may not reflect current scientific knowledge or recommendations. Current information available from University of Minnesota Agricultural Experiment Station: http://www.maes.umn.edu

    A global map to aid the identification and screening of critical habitat for marine industries

    Get PDF
    Marine industries face a number of risks that necessitate careful analysis prior to making decisions on the siting of operations and facilities. An important emerging regulatory framework on environmental sustainability for business operations is the International Finance Corporation’s Performance Standard 6 (IFC PS6). Within PS6, identification of biodiversity significance is articulated through the concept of “Critical Habitat”, a definition developed by the IFC and detailed through criteria aligned with those that support internationally accepted biodiversity designations. No publicly available tools have been developed in either the marine or terrestrial realm to assess the likelihood of sites or operations being located within PS6-defined Critical Habitat. This paper presents a starting point towards filling this gap in the form of a preliminary global map that classifies more than 13 million km2 of marine and coastal areas of importance for biodiversity (protected areas, Key Biodiversity Areas [KBA], sea turtle nesting sites, cold- and warm-water corals, seamounts, seagrass beds, mangroves, saltmarshes, hydrothermal vents and cold seeps) based on their overlap with Critical Habitat criteria, as defined by IFC. In total, 5798×103 km2 (1.6%) of the analysis area (global ocean plus coastal land strip) were classed as Likely Critical Habitat, and 7526×103 km2 (2.1%) as Potential Critical Habitat; the remainder (96.3%) were Unclassified. The latter was primarily due to the paucity of biodiversity data in marine areas beyond national jurisdiction and/or in deep waters, and the comparatively fewer protected areas and KBAs in these regions. Globally, protected areas constituted 65.9% of the combined Likely and Potential Critical Habitat extent, and KBAs 29.3%, not accounting for the overlap between these two features. Relative Critical Habitat extent in Exclusive Economic Zones varied dramatically between countries. This work is likely to be of particular use for industries operating in the marine and coastal realms as an early screening aid prior to in situ Critical Habitat assessment; to financial institutions making investment decisions; and to those wishing to implement good practice policies relevant to biodiversity management. Supplementary material (available online) includes other global datasets considered, documentation and justification of biodiversity feature classification, detail of IFC PS6 criteria/scenarios, and coverage calculations

    On the structure of eigenfunctions corresponding to embedded eigenvalues of locally perturbed periodic graph operators

    Full text link
    The article is devoted to the following question. Consider a periodic self-adjoint difference (differential) operator on a graph (quantum graph) G with a co-compact free action of the integer lattice Z^n. It is known that a local perturbation of the operator might embed an eigenvalue into the continuous spectrum (a feature uncommon for periodic elliptic operators of second order). In all known constructions of such examples, the corresponding eigenfunction is compactly supported. One wonders whether this must always be the case. The paper answers this question affirmatively. What is more surprising, one can estimate that the eigenmode must be localized not far away from the perturbation (in a neighborhood of the perturbation's support, the width of the neighborhood determined by the unperturbed operator only). The validity of this result requires the condition of irreducibility of the Fermi (Floquet) surface of the periodic operator, which is expected to be satisfied for instance for periodic Schroedinger operators.Comment: Submitted for publicatio
    • …
    corecore