23 research outputs found

    Should every child with epilepsy undergo screening for psychiatric comorbidities?

    Get PDF
    Purpose: We aimed to build a classification system that uses resting-state (no visible scalp epileptic activity) EEG-based directed functional connectivity values to assign a patient to one of three classes: left TLE (LTLE), right TLE (RTLE) or healthy control. Methods: Twenty LTLE, 20 RTLE and 35 healthy controls underwent resting-state high-density EEG. For each subject, sixty 1-sec epochs free of artifacts or interictal spikes were selected. The source activity was obtained for 82 regions of interest using an individual head model and distributed linear inverse solution. The summed outflow and whole-brain directed functional connectivity were estimated in the theta, alpha and beta frequency bands using Granger-causal modeling. A Random Forest classifier (an ensemble of decision tree classifiers) was then used to assign the subject to one of three classes. The mean classification accuracy was computed with a leave-one-out procedure. We selected a maximum of six connectivity values for classification, using a greedy forward selection algorithm. Finally, three classifiers were built: ‘Control vs. LTLE’, ‘Control vs. RTLE’ and ‘LTLE vs. RTLE’. In the final classification system, a new subject is assigned to the class that was most voted by these three classifiers. Results: The ‘Control vs. RTLE’ classifier achieved an accuracy of 78.2% (sensitivity: 80.0%, specificity 77.2%), ‘Control vs. LTLE’ an accuracy of 83.6% (sensitivity 85.0%, specificity 82.9%) and ‘LTLE vs. RTLE’ an accuracy of 85.0% (sensitivity 85.0%, specificity 85.0%). Combining these classifiers into one system yielded that 16, 15 and 27 subjects were correctly classified as being, respectively, RTLE, LTLE and control. Conclusion: The high accuracy achieved demonstrates the potential of resting-state EEG-based directed functional connectivity for the diagnosis and lateralization of TLE. This could constitute a new clinical biomarker for surgical candidates and earlier in the course of the disease

    Caudwell Xtreme Everest: A prospective study of the effects of environmental hypoxia on cognitive functioning.

    Get PDF
    BACKGROUND: The neuropsychological consequences of exposure to environmental hypobaric hypoxia (EHH) remain unclear. We thus investigated them in a large group of healthy volunteers who trekked to Mount Everest base camp (5,300 m). METHODS: A neuropsychological (NP) test battery assessing memory, language, attention, and executive function was administered to 198 participants (age 44.5±13.7 years; 60% male). These were studied at baseline (sea level), 3,500 m (Namche Bazaar), 5,300 m (Everest Base Camp) and on return to 1,300 m (Kathmandu) (attrition rate 23.7%). A comparable control group (n = 25; age 44.5±14.1 years; 60% male) for comparison with trekkers was tested at/or near sea level over an equivalent timeframe so as to account for learning effects associated with repeat testing. The Reliable Change Index (RCI) was used to calculate changes in cognition and neuropsychological function during and after exposure to EHH relative to controls. RESULTS: Overall, attention, verbal ability and executive function declined in those exposed to EHH when the performance of the control group was taken into account (RCI .05 to -.95) with decline persisting at descent. Memory and psychomotor function showed decline at highest ascent only (RCI -.08 to -.56). However, there was inter-individual variability in response: whilst NP performance declined in most, this improved in some trekkers. Cognitive decline was greater amongst older people (r = .42; p < .0001), but was otherwise not consistently associated with socio-demographic, mood, or physiological variables. CONCLUSIONS: After correcting for learning effects, attention, verbal abilities and executive functioning declined with exposure to EHH. There was considerable individual variability in the response of brain function to sustained hypoxia with some participants not showing any effects of hypoxia. This might have implications for those facing sustained hypoxia as a result of any disease

    SARS-CoV-2-specific nasal IgA wanes 9 months after hospitalisation with COVID-19 and is not induced by subsequent vaccination

    Get PDF
    BACKGROUND: Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced. METHODS: In this follow up study, plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data. FINDINGS: Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months (p < 0.0001). Nasal and plasma anti-S IgG remained elevated for at least 12 months (p < 0.0001) with plasma neutralising titres that were raised against all variants compared to controls (p < 0.0001). Of 323 with complete data, 307 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal (1.46-fold change after 10 months, p = 0.011) and the median remained below the positive threshold determined by pre-pandemic controls. Samples 12 months after admission showed no association between nasal IgA and plasma IgG anti-S responses (R = 0.05, p = 0.18), indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination. INTERPRETATION: The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity. FUNDING: This study has been supported by ISARIC4C and PHOSP-COVID consortia. ISARIC4C is supported by grants from the National Institute for Health and Care Research and the Medical Research Council. Liverpool Experimental Cancer Medicine Centre provided infrastructure support for this research. The PHOSP-COVD study is jointly funded by UK Research and Innovation and National Institute of Health and Care Research. The funders were not involved in the study design, interpretation of data or the writing of this manuscript

    On the Noether gap theorem

    No full text

    The Components of Plant Tissue Culture Media II: Organic Additions, Osmotic and pH Effects, and Support Systems

    No full text

    Mouse chromosome 2

    No full text
    corecore