573 research outputs found

    Scaling properties in off equilibrium dynamical processes

    Full text link
    In the present paper, we analyze the consequences of scaling hypotheses on dynamic functions, as two times correlations C(t,t′)C(t,t'). We show, under general conditions, that C(t,t′)C(t,t') must obey the following scaling behavior C(t,t′)=ϕ1(t)f(β)S(β)C(t,t') = \phi_1(t)^{f(\beta)}{\cal{S}}(\beta), where the scaling variable is β=β(ϕ1(t′)/ϕ1(t))\beta=\beta(\phi_1(t')/\phi_1(t)) and ϕ1(t′)\phi_1(t'), ϕ1(t)\phi_1(t) two undetermined functions. The presence of a non constant exponent f(β)f(\beta) signals the appearance of multiscaling properties in the dynamics.Comment: 6 pages, no figure

    Localization properties of the anomalous diffusion phase x tμx ~ t^{\mu} in the directed trap model and in the Sinai diffusion with bias

    Full text link
    We study the anomalous diffusion phase x tμx ~ t^{\mu} with 0<μ<10<\mu<1 which exists both in the Sinai diffusion at small bias, and in the related directed trap model presenting a large distribution of trapping time p(τ)∼1/τ1+μp(\tau) \sim 1/\tau^{1+\mu}. Our starting point is the Real Space Renormalization method in which the whole thermal packet is considered to be in the same renormalized valley at large time : this assumption is exact only in the limit μ→0\mu \to 0 and corresponds to the Golosov localization. For finite μ\mu, we thus generalize the usual RSRG method to allow for the spreading of the thermal packet over many renormalized valleys. Our construction allows to compute exact series expansions in μ\mu of all observables : at order μn\mu^n, it is sufficient to consider a spreading of the thermal packet onto at most (1+n)(1+n) traps in each sample, and to average with the appropriate measure over the samples. For the directed trap model, we show explicitly up to order μ2\mu^2 how to recover the diffusion front, the thermal width, and the localization parameter Y2Y_2. We moreover compute the localization parameters YkY_k for arbitrary kk, the correlation function of two particles, and the generating function of thermal cumulants. We then explain how these results apply to the Sinai diffusion with bias, by deriving the quantitative mapping between the large-scale renormalized descriptions of the two models.Comment: 33 pages, 3 eps figure

    Aging dynamics of heterogeneous spin models

    Full text link
    We investigate numerically the dynamics of three different spin models in the aging regime. Each of these models is meant to be representative of a distinct class of aging behavior: coarsening systems, discontinuous spin glasses, and continuous spin glasses. In order to study dynamic heterogeneities induced by quenched disorder, we consider single-spin observables for a given disorder realization. In some simple cases we are able to provide analytical predictions for single-spin response and correlation functions. The results strongly depend upon the model considered. It turns out that, by comparing the slow evolution of a few different degrees of freedom, one can distinguish between different dynamic classes. As a conclusion we present the general properties which can be induced from our results, and discuss their relation with thermometric arguments.Comment: 39 pages, 36 figure

    Can we Determine Electric Fields and Poynting Fluxes from Vector Magnetograms and Doppler Measurements?

    Full text link
    The availability of vector magnetogram sequences with sufficient accuracy and cadence to estimate the time derivative of the magnetic field allows us to use Faraday's law to find an approximate solution for the electric field in the photosphere, using a Poloidal-Toroidal Decomposition (PTD) of the magnetic field and its partial time derivative. Without additional information, however, the electric field found from this technique is under-determined -- Faraday's law provides no information about the electric field that can be derived the gradient of a scalar potential. Here, we show how additional information in the form of line-of-sight Doppler flow measurements, and motions transverse to the line-of-sight determined with ad-hoc methods such as local correlation tracking, can be combined with the PTD solutions to provide much more accurate solutions for the solar electric field, and therefore the Poynting flux of electromagnetic energy in the solar photosphere. Reliable, accurate maps of the Poynting flux are essential for quantitative studies of the buildup of magnetic energy before flares and coronal mass ejections.Comment: Solar Physics, in press. 14 pages, 3 figure

    Crossover from two- to three-dimensional critical behavior for nearly antiferromagnetic itinerant electrons

    Full text link
    The crossover from two- to three-dimensional critical behavior of nearly antiferromagnetic itinerant electrons is studied in a regime where the inter-plane single-particle motion of electrons is quantum-mechanically incoherent because of thermal fluctuations. This is a relevant regime for very anisotropic materials like the cuprates. The problem is studied within the Two-Particle Self-Consistent approach (TPSC), that has been previously shown to give a quantitative description of Monte Carlo data for the Hubbard model. It is shown that TPSC belongs to the n→∞n\rightarrow \infty limit of the O(n)O\left( n\right) universality class. However, contrary to the usual approaches, cutoffs appear naturally in the microscopic TPSC theory so that parameter-free calculations can be done for Hubbard models with arbitrary band structure. A general discussion of universality in the renormalized-classical crossover from d=2d=2 to d=3d=3 is also given.Comment: Revtex, 23 pages + 6 postcript figures (with epsfile

    Effects of Pore Walls and Randomness on Phase Transitions in Porous Media

    Full text link
    We study spin models within the mean field approximation to elucidate the topology of the phase diagrams of systems modeling the liquid-vapor transition and the separation of He3^3--He4^4 mixtures in periodic porous media. These topologies are found to be identical to those of the corresponding random field and random anisotropy spin systems with a bimodal distribution of the randomness. Our results suggest that the presence of walls (periodic or otherwise) are a key factor determining the nature of the phase diagram in porous media.Comment: REVTeX, 11 eps figures, to appear in Phys. Rev.

    Finite Number and Finite Size Effects in Relativistic Bose-Einstein Condensation

    Get PDF
    Bose-Einstein condensation of a relativistic ideal Bose gas in a rectangular cavity is studied. Finite size corrections to the critical temperature are obtained by the heat kernel method. Using zeta-function regularization of one-loop effective potential, lower dimensional critical temperatures are calculated. In the presence of strong anisotropy, the condensation is shown to occur in multisteps. The criteria of this behavior is that critical temperatures corresponding to lower dimensional systems are smaller than the three dimensional critical temperature.Comment: 18 pages, 9 figures, Fig.3 replaced, to appear in Physical Review

    Depinning of semiflexible polymers in (1+1) dimensions

    Full text link
    We present a theoretical analysis of a simple model of the depinning of an anchored semiflexible polymer from a fixed planar substrate in (1+1) dimensions. We consider a polymer with a discrete sequence of pinning sites along its contour. Using the scaling properties of the conformational distribution function in the stiff limit and applying the necklace model of phase transitions in quasi-one-dimensional systems, we obtain a melting criterion in terms of the persistence length, the spacing between pinning sites, a microscopic effective length which characterizes a bond, and the bond energy. The limitations of this and other similar approaches are also discussed. In the case of force-induced unbinding, it is shown that the bending rigidity favors the unbinding through a ``lever-arm effect''

    A white humpback whale (Megaptera novaeangliae) in the Atlantic Ocean, Svalbard, Norway, August 2012

    Get PDF
    A white humpback whale (Megaptera novaeangliae) was observed on several occasions off Svalbard, Norway, during August 2012. The animal was completely white, except for a few small dark patches on the ventral side of its fluke. The baleen plates were light-coloured, but the animal&#x0027;s eyes had normal (dark) colouration. This latter characteristic indicates that the animal was not an albino; it was a leucistic individual. The animal was a full-sized adult and was engaged in &#x201C;bubble-feeding&#x201D;, together with 15&#x2013;20 other humpback whales, each time it was seen. Subsequent to these sightings, polling of the marine mammal science community has resulted in the discovery of two other observations of white humpback whales in the Barents Sea area, one in 2004 and another in 2006; in both cases the observed individuals were adult animals. It is likely that all of these sightings are of the same individual, but there is no genetic or photographic evidence to confirm this suggestion. The rarity of observations of such white individuals suggests that they are born at very low frequencies or that the ontogenetic survival rates of the colour morph are low

    Escaping from cycles through a glass transition

    Get PDF
    A random walk is performed over a disordered media composed of NN sites random and uniformly distributed inside a dd-dimensional hypercube. The walker cannot remain in the same site and hops to one of its nn neighboring sites with a transition probability that depends on the distance DD between sites according to a cost function E(D)E(D). The stochasticity level is parametrized by a formal temperature TT. In the case T=0T = 0, the walk is deterministic and ergodicity is broken: the phase space is divided in a O(N){\cal O}(N) number of attractor basins of two-cycles that trap the walker. For d=1d = 1, analytic results indicate the existence of a glass transition at T1=1/2T_1 = 1/2 as N→∞N \to \infty. Below T1T_1, the average trapping time in two-cycles diverges and out-of-equilibrium behavior appears. Similar glass transitions occur in higher dimensions choosing a proper cost function. We also present some results for the statistics of distances for Poisson spatial point processes.Comment: 11 pages, 4 figure
    • …
    corecore