328 research outputs found
Unitarity Restoration in the Presence of Closed Timelike Curves
A proposal is made for a mathematically unambiguous treatment of evolution in
the presence of closed timelike curves. In constrast to other proposals for
handling the naively nonunitary evolution that is often present in such
situations, this proposal is causal, linear in the initial density matrix and
preserves probability. It provides a physically reasonable interpretation of
invertible nonunitary evolution by redefining the final Hilbert space so that
the evolution is unitary or equivalently by removing the nonunitary part of the
evolution operator using a polar decomposition.Comment: LaTeX, 17pp, Revisions: Title change, expanded and clarified
presentation of original proposal, esp. with regard to Heisenberg picture and
remaining in original Hilbert spac
On the warp drive space-time
In this paper the problem of the quantum stability of the two-dimensional
warp drive spacetime moving with an apparent faster than light velocity is
considered. We regard as a maximum extension beyond the event horizon of that
spacetime its embedding in a three-dimensional Minkowskian space with the
topology of the corresponding Misner space. It is obtained that the interior of
the spaceship bubble becomes then a multiply connected nonchronal region with
closed timelike curves and that the most natural vacuum allows quantum
fluctuations which do not induce any divergent behaviour of the re-normalized
stress-energy tensor, even on the event (Cauchy) chronology horizon. In such a
case, the horizon encloses closed timelike curves only at scales close to the
Planck length, so that the warp drive satisfies the Ford's negative energy-time
inequality. Also found is a connection between the superluminal two-dimensional
warp drive space and two-dimensional gravitational kinks. This connection
allows us to generalize the considered Alcubierre metric to a standard,
nonstatic metric which is only describable on two different coordinate patchesComment: 7 pages, minor comment on chronology protection added, RevTex, to
appear in Phys. Rev.
Unitarity and Causality in Generalized Quantum Mechanics for Non-Chronal Spacetimes
Spacetime must be foliable by spacelike surfaces for the quantum mechanics of
matter fields to be formulated in terms of a unitarily evolving state vector
defined on spacelike surfaces. When a spacetime cannot be foliated by spacelike
surfaces, as in the case of spacetimes with closed timelike curves, a more
general formulation of quantum mechanics is required. In such generalizations
the transition matrix between alternatives in regions of spacetime where states
{\it can} be defined may be non-unitary. This paper describes a generalized
quantum mechanics whose probabilities consistently obey the rules of
probability theory even in the presence of such non-unitarity. The usual notion
of state on a spacelike surface is lost in this generalization and familiar
notions of causality are modified. There is no signaling outside the light
cone, no non-conservation of energy, no ``Everett phones'', and probabilities
of present events do not depend on particular alternatives of the future.
However, the generalization is acausal in the sense that the existence of
non-chronal regions of spacetime in the future can affect the probabilities of
alternatives today. The detectability of non-unitary evolution and violations
of causality in measurement situations are briefly considered. The evolution of
information in non-chronal spacetimes is described.Comment: 40pages, UCSBTH92-0
The PHENIX Experiment at RHIC
The physics emphases of the PHENIX collaboration and the design and current
status of the PHENIX detector are discussed. The plan of the collaboration for
making the most effective use of the available luminosity in the first years of
RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program
available at http://www.rhic.bnl.gov/phenix
A fluorescent assay for ceramide synthase activity
The sphingolipids are a diverse family of lipids with important roles in membrane compartmentalization, intracellular signaling, and cell-cell recognition. The central sphingolipid metabolite is ceramide, formed by the transfer of a variable length fatty acid from coenzyme A to a sphingoid base, generally sphingosine or dihydrosphingosine (sphinganine) in mammals. This reaction is catalyzed by a family of six ceramide synthases (CerS1-6). CerS activity is usually assayed using either radioactive substrates or LC-MS/MS. We describe a CerS assay with fluorescent, NBD-labeled sphinganine as substrate. The assay is readily able to detect endogenous CerS activity when using amounts of cell or tissue homogenate protein that are lower than those reported for the radioactive assay, and the Michaelis-Menten constant was essentially the same for NBD-sphinganine and unlabeled sphinganine, indicating that NBD-sphinganine is a good substrate for these enzymes. Using our assay, we confirm that the new clinical immunosuppressant FTY720 is a competitive inhibitor of CerS activity, and show that inhibition requires the compound's lipid tail and amine headgroup. In summary, we describe a fluorescent assay for CerS activity that circumvents the need to use radioactive substrates, while being more accessible and cheaper than LC-MS based assays.Hyun Joon Kim, Qiao Qiao, Hamish D. Toop, Jonathan C. Morris and Anthony S. Do
Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET
The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
On Methods of Finding Bäcklund Transformations in Systems with More than Two Independent Variables
Factorization of integrals, defining the beta-function, into integrals of total derivatives in N=1 SQED, regularized by higher derivatives
Some calculations in supersymmetric theories, made with the higher derivative
regularization, show that the beta-function is given by integrals of total
derivatives. This is qualitatively explained for the N=1 supersymmetric
electrodynamics in all orders.Comment: 14 page
Report of the Evaluation Team on Management and Administration [Reporte del Grupo de Evaluación sobre Manejode y Administración]
Transparency in qualitative research: An overview of key findings and implications of the deliberations
- …
