18 research outputs found

    Phylogenomic analysis of a 55.1 kb 19-gene dataset resolves a monophyletic Fusarium that includes the Fusarium solani Species Complex

    Get PDF
    Scientific communication is facilitated by a data-driven, scientifically sound taxonomy that considers the end-user¿s needs and established successful practice. In 2013, the Fusarium community voiced near unanimous support for a concept of Fusarium that represented a clade comprising all agriculturally and clinically important Fusarium species, including the F. solani species complex (FSSC). Subsequently, this concept was challenged in 2015 by one research group who proposed dividing the genus Fusarium into seven genera, including the FSSC described as members of the genus Neocosmospora, with subsequent justification in 2018 based on claims that the 2013 concept of Fusarium is polyphyletic. Here, we test this claim and provide a phylogeny based on exonic nucleotide sequences of 19 orthologous protein-coding genes that strongly support the monophyly of Fusarium including the FSSC. We reassert the practical and scientific argument in support of a genus Fusarium that includes the FSSC and several other basal lineages, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students, and researchers with a stake in its taxonomy. In recognition of this monophyly, 40 species described as genus Neocosmospora were recombined in genus Fusarium, and nine others were renamed Fusarium. Here the global Fusarium community voices strong support for the inclusion of the FSSC in Fusarium, as it remains the best scientific, nomenclatural, and practical taxonomic option availabl

    Rik Korswagen: Moleculair Bioloog

    No full text

    Imidazo[1,2-a]pyridin-3-amines as potential HIV-1 non-nucleoside reverse transcriptase inhibitors

    No full text
    During random screening of a small in-house library of compounds, certain substituted imidazo[1,2-a]pyridines were found to be weak allosteric inhibitors of HIV-1 reverse transcriptase (RT). A library of these compounds was prepared using the Groebke reaction and a subset of compounds prepared from 2-chlorobenzaldehyde, cyclohexyl isocyanide and a 6-substituted 2-aminopyridine showed good inhibitory activity in enzymatic (RT) and HIV anti-infectivity MAGI whole cell assays. The compound showing the best anti-HIV-1 IIIB whole cell activity (MAGI IC50 = 0.18 μM, IC90 = 1.06 μM), along with a good selectivity index (>800), was 2-(2-chlorophenyl)-3- (cyclohexylamino)imidazo[1,2-a]pyridine-5-carbonitrile 38. © 2011 Elsevier Ltd. All rights reserved.Articl

    No to Neocosmospora: Phylogenomic and Practical Reasons for Continued Inclusion of the Fusarium solani Species Complex in the Genus Fusarium

    No full text
    Contains fulltext : 225984.pdf (publisher's version ) (Open Access)This article is to alert medical mycologists and infectious disease specialists of recent name changes of medically important species of the filamentous mold Fusarium Fusarium species can cause localized and life-threating infections in humans. Of the 70 Fusarium species that have been reported to cause infections, close to one-third are members of the Fusarium solani species complex (FSSC), and they collectively account for approximately two-thirds of all reported Fusarium infections. Many of these species were recently given scientific names for the first time by a research group in the Netherlands, but they were misplaced in the genus Neocosmospora In this paper, we present genetic arguments that strongly support inclusion of the FSSC in Fusarium There are potentially serious consequences associated with using the name Neocosmospora for Fusarium species because clinicians need to be aware that fusaria are broadly resistant to the spectrum of antifungals that are currently available
    corecore