167 research outputs found

    Freeze tolerance of Cyphoderris monstrosa (Orthoptera: Prophalangopsidae)

    Get PDF
    The great grig, Cyphoderris monstrosa Uhler (Orthoptera: Prophalangopsidae), is a large (20-30 mm, \u3e1 g), nocturnal ensiferan that in habits montane coniferous forests in northwestern North America. C. monstrosa overwinters as a late-instar nymph, but its cold tolerance strategy has not previously been reported. We collected nymphs from near Kamloops, British Columbia, in late spring to determine their cold tolerance strategy. C. monstrosa nymphs were active at low temperatures until they froze at -4.6 ± 0.3 °C. The nymphs survived internal ice formation (i.e. are freeze tolerant), had a lethal temperature between -9 and -12 °C, and could survive for between five and ten days at -6 °C. Isolated C. monstrosa gut, Malpighian tubules and hind femur muscle tissues froze at temperatures similar to whole nymphs, and likely inoculate freezing in vivo. Hemolymph osmolality was 358 ± 51 mOsm, with trehalose and proline comprising approximately 10 % of that total. Glycerol was not detectable in hemolymph from field-fresh nymphs, but accumulated after freezing and thawing. The control of ice formation and presence of hemolymph cryoprotectants may contribute to C. monstrosa freeze tolerance and overwintering survival

    Laboratory acclimation to autumn-like conditions induces freeze tolerance in the spring field cricket Gryllus veletis (Orthoptera: Gryllidae)

    Get PDF
    Many temperate insects encounter temperatures low enough to freeze their body fluids. Remarkably, some insects are freeze-tolerant, surviving this internal ice formation. However, the mechanisms underlying freeze tolerance are not well-understood, in part due to a lack of tractable model organisms. We describe a novel laboratory model to study insect freeze tolerance, the spring field cricket Gryllus veletis (Orthopera: Gryllidae). Following acclimation to six weeks of decreasing temperature and photoperiod, G. veletis become freeze-tolerant, similar to those exposed to natural autumn conditions in London, Ontario, Canada. Acclimated crickets suppress their metabolic rate by c. 33%, and survive freezing for up to one week at -8°C, and to temperatures as low as -12°C. Freeze-tolerant G. veletis protect fat body cells from freeze injury in vivo, and fat body tissue from freeze-tolerant cricket survives brief freeze treatments when frozen ex vivo. Freeze-tolerant crickets freeze at c. -6°C, which may be initiated by accumulation of ice-nucleating agents in hemolymph or gut tissue. We hypothesize that control of ice formation facilitates freeze tolerance, but initiating ice formation at high subzero temperatures does not confer freeze tolerance on freeze-intolerant nymphs. Acclimation increases hemolymph osmolality from c. 400 to c. 650 mOsm, which may facilitate freeze tolerance by reducing ice content. Hemolymph ion concentrations do not change with acclimation, and we therefore predict that freeze-tolerant G. veletis elevate hemolymph osmolality by accumulating other molecules. Gryllus veletis is easily reared and manipulated in a controlled laboratory environment, and is therefore a suitable candidate for further investigating the mechanisms underlying freeze tolerance

    Rangelands Vegetation Mapping at Species Composition Level Using the \u3cb\u3eSPiCla\u3c/b\u3e Method: \u3cb\u3eS\u3c/b\u3eDM Based \u3cb\u3ePi\u3c/b\u3exel \u3cb\u3eCla\u3c/b\u3essification and Fuzzy Accuracy. A New Approach of Map Making

    Get PDF
    Vegetation maps have been made since centuries. The vegetation cover was represented as homogeneous mapping units (polygons), representing different vegetation types, where each type consists a combination of different plant species (floristic composition). More recent, with the use of satellite imagery, the polygons have been replaced by pixels with similar content as the polygon maps. In both approaches, field-observations were linked to the mapping units (polygons or pixels) often resulting in a complex of different vegetation types per mapping unit. In our new approach field data (sample points) on presence and abundance of individual grass species are spatially extrapolated based on a set of environmental layers, using the species distribution modelling approach (SDM). When combined, each pixel will contain its own set of information about the vegetation structure and its floristic composition. This new methodology (SPiCla) results in a very accurate and detailed vegetation map at pixel level, allowing extraction of very detailed, accurate and easy to update spatial information on e.g., forage production and quality (palatability) for rangelands management. As no exact boundaries exist, but only gradients, we introduced fuzzy accuracy. The resolution mainly depends on the resolution of (or one of) the environmental layers used, scale of interest and workability. The methodology is generic and applicable to any other region in the world

    Cerebral activations related to ballistic, stepwise interrupted and gradually modulated movements in parkinson patients

    Get PDF
    Patients with Parkinson's disease (PD) experience impaired initiation and inhibition of movements such as difficulty to start/stop walking. At single-joint level this is accompanied by reduced inhibition of antagonist muscle activity. While normal basal ganglia (BG) contributions to motor control include selecting appropriate muscles by inhibiting others, it is unclear how PD-related changes in BG function cause impaired movement initiation and inhibition at single-joint level. To further elucidate these changes we studied 4 right-hand movement tasks with fMRI, by dissociating activations related to abrupt movement initiation, inhibition and gradual movement modulation. Initiation and inhibition were inferred from ballistic and stepwise interrupted movement, respectively, while smooth wrist circumduction enabled the assessment of gradually modulated movement. Task-related activations were compared between PD patients (N = 12) and healthy subjects (N = 18). In healthy subjects, movement initiation was characterized by antero-ventral striatum, substantia nigra (SN) and premotor activations while inhibition was dominated by subthalamic nucleus (STN) and pallidal activations, in line with the known role of these areas in simple movement. Gradual movement mainly involved antero-dorsal putamen and pallidum. Compared to healthy subjects, patients showed reduced striatal/SN and increased pallidal activation for initiation, whereas for inhibition STN activation was reduced and striatal-thalamo-cortical activation increased. For gradual movement patients showed reduced pallidal and increased thalamo-cortical activation. We conclude that PD-related changes during movement initiation fit the (rather static) model of alterations in direct and indirect BG pathways. Reduced STN activation and regional cortical increased activation in PD during inhibition and gradual movement modulation are better explained by a dynamic model that also takes into account enhanced responsiveness to external stimuli in this disease and the effects of hyper-fluctuating cortical inputs to the striatum and STN in particular

    The effect of pyramiding Phytophthora infestans resistance genes RPi-mcd1 and RPi-ber in potato

    Get PDF
    Despite efforts to control late blight in potatoes by introducing Rpi-genes from wild species into cultivated potato, there are still concerns regarding the durability and level of resistance. Pyramiding Rpi-genes can be a solution to increase both durability and level of resistance. In this study, two resistance genes, RPi-mcd1 and RPi-ber, introgressed from the wild tuber-bearing potato species Solanum microdontum and S. berthaultii were combined in a diploid S. tuberosum population. Individual genotypes from this population were classified after four groups, carrying no Rpi-gene, with only RPi-mcd1, with only RPi-ber, and a group with the pyramided RPi-mcd1 and RPi-ber by means of tightly linked molecular markers. The levels of resistance between the groups were compared in a field experiment in 2007. The group with RPi-mcd1 showed a significant delay to reach 50% infection of the leaf area of 3 days. The group with RPi-ber showed a delay of 3 weeks. The resistance level in the pyramid group suggested an additive effect of RPi-mcd1 with RPi-ber. This suggests that potato breeding can benefit from combining individual Rpi-genes, irrespective of the weak effect of RPi-mcd1 or the strong effect of RPi-ber

    Polymorphisms near TBX5 and GDF7 are associated with increased risk for Barrett's esophagus.

    Get PDF
    BACKGROUND & AIMS: Barrett's esophagus (BE) increases the risk of esophageal adenocarcinoma (EAC). We found the risk to be BE has been associated with single nucleotide polymorphisms (SNPs) on chromosome 6p21 (within the HLA region) and on 16q23, where the closest protein-coding gene is FOXF1. Subsequently, the Barrett's and Esophageal Adenocarcinoma Consortium (BEACON) identified risk loci for BE and esophageal adenocarcinoma near CRTC1 and BARX1, and within 100 kb of FOXP1. We aimed to identify further SNPs that increased BE risk and to validate previously reported associations. METHODS: We performed a genome-wide association study (GWAS) to identify variants associated with BE and further analyzed promising variants identified by BEACON by genotyping 10,158 patients with BE and 21,062 controls. RESULTS: We identified 2 SNPs not previously associated with BE: rs3072 (2p24.1; odds ratio [OR] = 1.14; 95% CI: 1.09-1.18; P = 1.8 × 10(-11)) and rs2701108 (12q24.21; OR = 0.90; 95% CI: 0.86-0.93; P = 7.5 × 10(-9)). The closest protein-coding genes were respectively GDF7 (rs3072), which encodes a ligand in the bone morphogenetic protein pathway, and TBX5 (rs2701108), which encodes a transcription factor that regulates esophageal and cardiac development. Our data also supported in BE cases 3 risk SNPs identified by BEACON (rs2687201, rs11789015, and rs10423674). Meta-analysis of all data identified another SNP associated with BE and esophageal adenocarcinoma: rs3784262, within ALDH1A2 (OR = 0.90; 95% CI: 0.87-0.93; P = 3.72 × 10(-9)). CONCLUSIONS: We identified 2 loci associated with risk of BE and provided data to support a further locus. The genes we found to be associated with risk for BE encode transcription factors involved in thoracic, diaphragmatic, and esophageal development or proteins involved in the inflammatory response
    corecore