

Western University Scholarship@Western

Biology Publications

Biology Department

Winter 12-2016

Freeze tolerance of Cyphoderris monstrosa (Orthoptera: Prophalangopsidae)

Jantina Toxopeus *Western University,* jtoxopeu@uwo.ca

Jacqueline Lebenzon Western University, jlebenzo@uwo.ca

Alexander H. Mckinnon Western University, amckinn9@uwo.ca

Brent J. Sinclair Western University, bsincla7@uwo.ca

Follow this and additional works at: https://ir.lib.uwo.ca/biologypub Part of the <u>Biology Commons</u>, <u>Entomology Commons</u>, and the <u>Molecular Biology Commons</u>

Citation of this paper:

Toxopeus, J., Lebenzon, J., McKinnon, A., & Sinclair, B. (2016). Freeze tolerance of Cyphoderris monstrosa (Orthoptera: Prophalangopsidae). The Canadian Entomologist, 148(6), 668-672. doi:10.4039/tce.2016.21

THE CANADIAN ENTOMOLOGIST

Freeze tolerance of *Cyphoderris monstrosa* (Orthoptera: Prophalangopsidae)

Journal:	The Canadian Entomologist				
Manuscript ID	TCE-N-2016-004.R1				
Manuscript Type:	Note				
Date Submitted by the Author:	n/a				
Complete List of Authors:	Toxopeus, Jantina; University of Western Ontario, Biology Lebenzon, Jacqueline; University of Western Ontario, Biology McKinnon, Alexander; University of Western Ontario, Biology Sinclair, Brent; University of Western Ontario, Department of Biology				
Abstract:	The great grig, <i>Cyphoderris monstrosa</i> Uhler (Orthoptera: Prophalangopsidae), is a large (20-30 mm, >1 g), nocturnal ensiferan that inhabits montane coniferous forests in northwestern North America. <i>C.</i> <i>monstrosa</i> overwinters as a late-instar nymph, but its cold tolerance strategy has not previously been reported. We collected nymphs from near Kamloops, British Columbia, in late spring to determine their cold tolerance strategy. <i>C. monstrosa</i> nymphs were active at low temperatures until they froze at -4.6 \pm 0.3 °C. The nymphs survived internal ice formation (i.e. are freeze tolerant), had a lethal temperature between -9 and -12 °C, and could survive for between five and ten days at -6 °C. Isolated <i>C. monstrosa</i> gut, Malpighian tubules and hind femur muscle tissues froze at temperatures similar to whole nymphs, and likely inoculate freezing <i>in</i> <i>vivo</i> . Hemolymph osmolality was 358 \pm 51 mOsm, with trehalose and proline comprising approximately 10 % of that total. Glycerol was not detectable in hemolymph from field-fresh nymphs, but accumulated after freezing and thawing. The control of ice formation and presence of hemolymph cryoprotectants may contribute to <i>C. monstrosa</i> freeze tolerance and overwintering survival.				

SCHOLARONE[™] Manuscripts

Freeze tolerance of Cyphoderris monstrosa (Orthoptera: Prophalangopsidae)

Jantina Toxopeus*, Jacqueline E. Lebenzon, Alexander H McKinnon, Brent J. Sinclair

Department of Biology, University of Western Ontario, 1151 Richmond Street N, London, ON,

N6A 5B7, Canada

*Author for correspondence

Jantina Toxopeus

Department of Biology, University of Western Ontario

1151 Richmond Street N

London, ON, N6A 5B7

Canada

Email: jtoxopeu@uwo.ca, Tel: (519) 661 2111 ext. 89158, Fax: (519) 661-3935

Jacqueline E. Lebenzon

Email: jlebenzo@uwo.ca, Tel: (519) 661 2111 ext. 89158

Alexander H McKinnon

Email: amckinn9@uwo.ca, Tel: (519) 661 2111 ext. 89158

Brent J. Sinclair

Email: <u>bsincla7@uwo.ca</u>, Tel: (519) 661 211 ext. 83138

1 Abstract

2	The great grig, Cyphoderris monstrosa Uhler (Orthoptera: Prophalangopsidae), is a
3	large (20-30 mm, >1 g), nocturnal ensiferan that inhabits montane coniferous forests
4	in northwestern North America. C. monstrosa overwinters as a late-instar nymph, but
5	its cold tolerance strategy has not previously been reported. We collected nymphs
6	from near Kamloops, British Columbia, in late spring to determine their cold
7	tolerance strategy. C. monstrosa nymphs were active at low temperatures until they
8	froze at -4.6 \pm 0.3 °C. The nymphs survived internal ice formation (i.e. are freeze
9	tolerant), had a lethal temperature between -9 and -12 $^{\circ}$ C, and could survive for
10	between five and ten days at -6 °C. Isolated C. monstrosa gut, Malpighian tubules
11	and hind femur muscle tissues froze at temperatures similar to whole nymphs, and
12	likely inoculate freezing <i>in vivo</i> . Hemolymph osmolality was 358 ± 51 mOsm, with
13	trehalose and proline comprising approximately 10 % of that total. Glycerol was not
14	detectable in hemolymph from field-fresh nymphs, but accumulated after freezing
15	and thawing. The control of ice formation and presence of hemolymph
16	cryoprotectants may contribute to C. monstrosa freeze tolerance and overwintering
17	survival.

18 Introduction

19 The great grig, *Cyphoderris monstrosa* Uhler (Orthoptera:

- 20 Prophalangopsidae), is a large (20 30 mm long, adults > 1.5 g) ensiferan that
- 21 inhabits montane coniferous forests of western North America (Morris and Gwynne
- 22 1978; Kumala *et al.* 2005). *C. monstrosa* is nocturnal, emerging from below-ground
- burrows and climbing conifers to feed on staminate cones (Caudell 1904; Morris and
- 24 Gwynne 1978; Ladau 2003). Males sing after dusk via tegminal stridulation (Morris
- and Gwynne 1978) from late May or early June until late August (Mason 1996).

26 *Cyphoderris* spp. are active at much lower temperatures than is typical for acoustic

27 insects, singing at temperatures near 0 °C (Morris and Gwynne 1978; Dodson *et al.*

28 1983; Morris et al. 1989). C. monstrosa are thought to overwinter as late-instar

29 nymphs in burrows below the leaf litter layer (Gwynne 1995), but nothing is known

- 30 about their low temperature biology.
- 31

32 Insects employ two dominant strategies to survive subzero temperatures: 33 freeze avoidant insects depress the temperature at which their fluids freeze, but die 34 upon ice formation, while freeze tolerant insects can withstand internal ice formation. 35 Although orthopteran eggs are freeze avoidant (e.g. Hao and Kang 2004), many 36 nymphs and adults are freeze tolerant (e.g. Alexander 1967). The mechanisms 37 underlying freeze tolerance are unclear, but many freeze-tolerant insects accumulate 38 low molecular weight cryoprotectants, including the disaccharide trehalose and free 39 amino acid proline, both detected in hemolymph of freeze-tolerant New Zealand

40	alpine weta, Hemideina maori Pictet & Saussure (Orthoptera: Anostosmatidae)
41	(Neufeld and Leader 1998). Many freeze-tolerant insects accumulate glycerol (Lee
42	2010), but this cryoprotectant has not been detected in freeze-tolerant orthopterans
43	(Ramløv et al. 1992; McKinnon 2015). Regulating the location and temperature of
44	ice nucleation is thought to be essential for insect freeze tolerance (Zachariassen and
45	Kristiansen 2000). These ice nucleators may be endogenous (e.g. proteins) or
46	exogenous (e.g. ice nucleating-active bacteria or ice crystals), and can be located in
47	the hemolymph (e.g. H. maori; Sinclair et al. 1999) and tissues (e.g. the Malpighian
48	tubules and fat bodies of <i>E. solidaginis</i> ; Mugnano et al. 1996).
49	
50	Here, we characterize the cold tolerance strategy, the lower lethal limits,
51	likely sites of ice nucleation, and common low molecular weight cryoprotectants of
52	the overwintering stage of <i>C. monstrosa</i> .
53	
54	Materials & Methods
55	We collected 40 nymphs by hand from tree trunks in pine forests near
56	Kamloops, British Columbia (50.45°N, 120.07°W, c. 1000 m a.s.l) from 27 May – 2
57	June 2015. During this period, the air temperature ranged from 7.3 to 29.3 °C, with a
58	daily mean of 17.8 °C (Environment Canada 2015). We placed nymphs in 100 ml
59	perforated plastic containers, with apple pieces for food. We shipped the animals on
60	ice to the University of Western Ontario, where we maintained them for 2-6 weeks at

The Canadian Entomologist

61	4 °C until use in experiments. Nymphs fed in captivity, thus apple pieces were
62	replaced weekly.
63	
64	For low temperature exposures, we placed nymphs (wet mass range: 0.3-1.48
65	g) in 35 ml plastic vials in contact with a type T (copper-constantan) thermocouple
66	and cooled them at 0.25 $^{\circ}$ C min ⁻¹ to the target temperature in an aluminum block
67	through which 50% methanol was circulated from a programmable refrigerated
68	circulator (Proline RP 55, Lauda, Wurzburg, Germany). We monitored the
69	temperature from the thermocouple using PicoLog software via a Picotech TC-08
70	thermocouple interface (Pico Technology, Cambridge, UK). Our general approach to
71	characterizing cold tolerance is described by Sinclair et al. (2015). In all cases, we
72	rewarmed the nymphs at 0.25 °C min ⁻¹ to 4 °C, weighed them (fresh mass \pm 0.01 g),
73	and transferred them to individual 100 ml containers with apple pieces at 15 °C for
74	recovery. Nymphs were considered 'alive' if they could stand and move in a
75	coordinated fashion 48 h after thawing. Because developmental stage of orthopterans
76	can modify parameters such as metabolic composition (e.g. Anand and Lorenz 2008),
77	we restricted subsequent experiments to larger nymphs (> 0.9 g).
78	
79	To determine the temperature at which ice formation begins (supercooling
80	point, SCP), we cooled nymphs in 35 ml plastic vials as described above, and
81	recorded the lowest temperature before the exotherm due to ice formation (Sinclair et
82	al. 2015). The survival of these nymphs was monitored (details below). To determine

83	the critical thermal minimum (CT_{min}), or the temperature at which the nymphs
84	entered chill coma, we cooled six nymphs from 25 °C to the SCP as described
85	previously (MacMillan and Sinclair 2011). Nymphs were monitored continuously,
86	and the CT_{min} was the temperature at which nymphs could no longer exhibit
87	coordinated movement in response to probing. We determined cold tolerance strategy
88	by monitoring survival of nymphs held for 1.5 h at -4 °C (unfrozen) or -6 °C (frozen),
89	with freezing confirmed by detection of the SCP exotherm of each nymph. We
90	considered them freeze tolerant if they survived both temperatures, freeze avoidant if
91	they survived at -4 °C but not -6 °C, or chill-susceptible if they were killed by
92	exposure both temperatures. We determined the lethal temperature by determining
93	survival of nymphs exposed to temperatures between -9 °C and -16 °C for 1.5 h. To
94	determine lethal time, we monitored survival of nymphs kept frozen at -6 °C for time
95	periods between 1.5 h and 10 d, and subsequently thawed. Each nymph was exposed
96	to only one cold treatment.
97	
98	To identify likely sites of ice nucleation, we compared the SCP of hemolymph
99	and several excised tissues (foregut, midgut, hindgut, Malpighian tubules, fat bodies,
100	and hind femur muscle) to whole body SCP. We extracted 4 μ l of hemolymph from
101	each of three nymphs (mass 1.16, 1.25, and 1.48 g) using a 20 μ l pipette, and diluted
102	it with 12 μl 3 % ascorbic acid to prevent coagulation (McKinnon 2015). We
103	dissected tissues from the same three nymphs, and placed them in 20 μl 3 % ascorbic

104	acid. We cooled hemolymph, tissue samples, and 20 µl 3 % ascorbic acid in 1.7 ml
105	microcentrifuge tubes at 0.25 °C min ⁻¹ from 4 °C to -30 °C, with thermocouples
106	attached to the external surface of tubes to detect temperature. We compared the
107	mean SCP of hemolymph (in 3 % ascorbic acid) to 3 % ascorbic acid alone, as well
108	as the mean SCP of hemolymph and each tissue to whole-body SCP using a one-way
109	ANOVA with planned contrasts in R version 3.0.3 (R Core Team 2013). Means are
110	reported ± s.e.m.
111	
112	We also determined total hemolymph osmolality using a nanolitre osmometer
113	(Otago Osmometers, Dunedin, New Zealand), as described previously (Crosthwaite
114	et al. 2011). To quantify potential low molecular weight cryoprotectants in the
115	hemolymph, we measured free proline (Carillo and Gibon 2011), glycerol
116	(Crosthwaite et al. 2011) and trehalose (Tennessen et al. 2014) in 4 µl samples of
117	hemolymph from three to eight nymphs (mass range: 0.9-1.48 g) using enzymatic
118	spectrophotometric assays. Hemolymph was extracted from untreated nymphs, as
119	well as nymphs that were frozen at -6 °C for 1 h. Mean osmolality and cryoprotectant
120	concentrations are reported \pm s.e.m.
121	
122	Results & Discussion
123	Cyphoderris monstrosa nymphs remained active as they were cooled, until
124	they froze at a mean SCP of -4.6 \pm 0.3 °C (range: -2.4 to -6.8 °C). All <i>C. monstrosa</i>
125	nymphs survived exposure to -4 °C (N =4, unfrozen) and -6 °C (N =4, frozen), thus we

126	conclude that they are freeze-tolerant. Most (75%) C. monstrosa survived being
127	frozen at -6 °C for 5 days (Fig. 1a), demonstrating survival of equilibrium ice
128	formation (which can take several hours in large Orthoptera; Ramløv and Westh
129	1993). However, they did not survive acute (1.5 h) exposures at or below -12 $^{\circ}$ C (Fig.
130	1b). This pattern is similar to other freeze-tolerant ensiferans, such as H. maori
131	(Ramløv et al. 1992), that freeze at moderate subzero temperatures, but have a
132	relatively high lower lethal temperature (Sinclair et al. 2003).
133	
134	The mean fresh mass of <i>C. monstrosa</i> nymphs was 0.95 ± 0.08 g (range: 0.30
135	to 1.52 g), and SCP was independent of fresh mass (linear regression, $F_{1,21} = 0.207$, p
136	= 0.65), suggesting that ice formation is initiated by ice nucleating agents (Sinclair et
137	al. 2009). The relationship between dry mass and SCP could be examined to verify
138	this trend (e.g. Ditrich and Koštál 2011). C. monstrosa hemolymph froze at -8.5 °C, 8
139	°C higher than the ascorbic acid anticoagulant (Fig. 2), indicating the presence of a
140	hemolymph ice nucleator (cf. Sømme 1986; Sinclair et al. 1999), although the low
141	SCP of hemolymph suggests that it is not the source of the high SCP we observe in
142	the whole animal. Fat body did not substantially increase the SCP of ascorbic acid,
143	but gut tissues, hind femur muscle and Malpighian tubules in ascorbic acid froze at
144	temperatures similar to whole-body SCP (Fig. 2). Thus, it appears that although there
145	is a nucleating agent in the hemolymph, ice formation is initiated by one or more of
146	these tissues, similar to the ice-nucleating Malpighian tubules and fat bodies of E .
147	solidaginis (Mugnano et al. 1996).

The Canadian Entomologist

Toxopeus 9

148

149	The hemolymph osmolality of C. monstrosa nymphs was 358 ± 51 mOsm
150	(N=4). This is lower than that of other freeze tolerant ensiferans, H. maori (700
151	mOsm; Ramløv 1999) and Gryllus veletis Alexander & Bigelow (Orthoptera:
152	Gryllidae) (615 mOsm; McKinnon 2015). C. monstrosa hemolymph contained 17.4 \pm
153	3.2 mM trehalose ($N=4$) and 12.7 ± 2.6 mM proline ($N=8$), accounting for
154	approximately 10% of total hemolymph osmolality. The concentrations of these
155	cryoprotectants are lower than in <i>H. maori</i> (Ramløv et al. 1992; Neufeld and Leader
156	1998) and G. veletis (McKinnon 2015). Like G. veletis and H. maori, we detected no
157	hemolymph glycerol in field-fresh nymphs ($N=3$). However, hemolymph sampled 2
158	to 4 weeks after the nymphs had been frozen at -6 °C contained 14.6 ± 5.7 mM
159	glycerol (N=3). No such changes in hemolymph concentrations of trehalose or proline
160	were observed after freezing. The increase in glycerol suggests that C. monstrosa
161	cryoprotectant composition is plastic, and that they may also be able to enhance
162	freeze tolerance in response to short cold exposures, such as frosts in the fall or late
163	spring (cf. Marshall and Sinclair 2015). Thus, although the hemolymph osmolality we
164	measured in C. monstrosa was not high in our spring-collected specimens, there is
165	potential for an increase in hemolymph osmolality prior to or during the winter
166	months, which may support lower lethal temperatures and tolerance to longer
167	durations frozen than we observed in this study.
168	

169	To our knowledge, this is the first report of freeze tolerance in
170	Prophalangopsidae. The minimum air temperature in Kamloops during the 2014-2015
171	winter was -19.6 °C (Environment Canada 2015), well below the lethal temperature
172	of C. monstrosa nymphs. However, their overwintering habitat is likely buffered by
173	snow cover (Petty et al. 2015), such that burrow temperatures likely do not approach
174	these low air temperatures. Future investigations could determine whether C.
175	monstrosa exhibits seasonal plasticity in freeze tolerance, and which mechanisms
176	(e.g. cryoprotectant accumulation) drive this plasticity.
177	
178	Acknowledgements
179	Thanks to Andrew Mason, Terrence Chang and Kevin Judge for collection advice,
180	and two anonymous referees for comments that improved the ms. This research was
181	supported by a National Sciences and Engineering Research Council (NSERC)
182	Discovery Grant to BJS and an Orthopterists' Society Theodore J. Cohn Research
183	Fund grant to JT. JT was supported by an NSERC Canada Graduate Scholarship, and
184	AHM by an Ontario Graduate Scholarship.

Cambridge University Press

100	A 1 1	$\mathbf{\alpha}$	10(7	C 11	1 1.	•	• , •	• •1	1
186	Alexander	(÷	1967	Cold	hardiness	1n	overwintering	111Venile	grasshonners
100	meranuel,	О.	1707.	COIU.	maramess	111	over wintering	juvenne	grassnoppers

- 187 Entomological News, **78**: 147-154.
- 188 Anand, A.N. and Lorenz, M.W. 2008 Age-dependent changes of fat body stores and
- 189 the regulation of fat body lipid synthesis and mobilisation by adipokinetic
- 190 hormone in the last larval instar of the cricket, *Gryllus bimaculatus*. Journal of
- 191 Insect Physiology, **54**: 1404-1412.
- 192 Carillo, P. and Gibon, Y. 2011. Protocol: extraction and determination of proline.
- 193 PrometheusWiki.
- 194 Caudell, A.N. 1904. The genus Cyphoderris. Journal of the New York Entomological
- 195 Society, **12**: 47-53.
- 196 Crosthwaite, J.C., Sobek, S., Lyons, D.B., Bernards, M.A., and Sinclair, B.J. 2011.
- The overwintering physiology of the emerald ash borer, *Agrilus planipennis*Fairmaire (Coleoptera: Buprestidae). Journal of Insect Physiology, **57**: 166-
- 199 173.
- 200 Ditrich, T. and Koštál, V. 2011. Comparative analysis of overwintering physiology in
- 201 nine species of semi-aquatic bugs (Heteroptera: Gerromorpha). Physiological
 202 Entomology, 36: 261-270.
- 203 Dodson, G.N., Morris, G.K., and Gwynne, D.T. 1983. Mating behavior of the
- 204 primitive orthopteran genus *Cyphoderris* (Haglidae). *In* Orthopteran mating
- systems: sexual competition in a diverse group of insects. *Edited by* D.T.
- 206 Gwynne and G.K. Morris. Westview Press, Inc., Boulder, USA. Pp. 305-318.

207	Environment Canada 2015. Historical climate data, Kamloops, British Columbia
208	[online]. Available from http://climate.weather.gc.ca/index_e.html [accessed 4
209	February 2016].
210	Gwynne, D.T. 1995. Phylogeny of the Ensifera (Orthoptera): a hypothesis supporting
211	multiple origins of acoustical signalling, complex spermatophores and
212	maternal care in crickets, katydids, and weta. Journal of Orthoptera Research,
213	203-218.
214	Hao, SG. and Kang, L. 2004. Supercooling capacity and cold hardiness of the eggs
215	of the grasshopper Chorthippus fallax (Orthoptera: Acrididae). European
216	Journal of Entomology, 101: 231-236.
217	Kumala, M., McLennan, D.A., Brooks, D.R., and Mason, A.C. 2005. Phylogenetic
218	relationships within hump-winged grigs, Cyphoderris (Insecta, Orthoptera,
219	Tettigonioidea, Haglidae). Canadian Journal of Zoology, 83: 1003-1011.
220	Ladau, J. 2003. Territoriality and singing-site preferences in the cricket, Cyphoderris
221	monstrosa (Orthoptera: Haglidae) in western North America. Entomological
222	News, 114 : 197-204.
223	Lee, R.E. 2010. A primer on insect cold-tolerance. In Low Temperature Biology of
224	Insects. Edited by D.L. Denlinger and R.E. Lee. Cambridge University Press,
225	New York, USA. Pp. 3-34.
226	MacMillan, H.A. and Sinclair, B.J. 2011. The role of gut in insect chilling injury:
227	cold-induced disruption of osmoregulation in the field fall cricket, Gryllus
228	pennsylvanicus. The Journal of Experimental Biology, 214: 726-734.

229	Marshall, K.E. and Sinclair, B.J. 2015. The relative importance of number, duration
230	and intensity of cold stress events in determining survival and energetics of an
231	overwintering insect. Functional Ecology, 29: 357-366.
232	Mason, A.C. 1996. Territoriality and the function of song in the primitive acoustic
233	insect Cyphoderris monstrosa (Orthoptera: Haglidae). Animal Behaviour, 51:
234	211-214.
235	McKinnon, A.H. 2015. Freeze tolerance in the spring field cricket, Gryllus veletis.
236	MSc thesis. University of Western Ontario, London, Canada.
237	Morris, G.K. and Gwynne, D.T. 1978. Geographical distribution and biological
238	observations of Cyphoderris (Orthoptera: Haglidae) with a description of a
239	new species. Psyche, 85 : 147-167.
240	Morris, G.K., Gwynne, D.T., Klimas, D.E., and Sakaluk, S.K. 1989. Virgin male
241	mating advantage in a primitive acoustic insect (Orthoptera: Haglidae).
242	Journal of Insect Behavior, 2 : 173-185.
243	Mugnano, J.A., Lee, R.E., and Taylor, R.T. 1996. Fat body cells and calcium
244	phosphate spherules induce ice nucleation in the freeze-tolerant larve of the
245	gall fly Eurosta solidaginis (Diptera, Tephritidae). The Journal of
246	Experimental Biology, 199: 465-471.
247	Neufeld, D.S. and Leader, L.P. 1998. Freezing survival by isolated Malpighian
248	tubules of the New Zealand alpine weta Hemideina maori. Journal of
249	Experimental Biology, 201 : 227-236.

250	Petty, S.K., Zuckerberg, B., and Pauli, J.N. 2015. Winter conditions and land cover
251	structure the subnivium, a seasonal refuge beneath the snow. PLoS One, 10:
252	e0127613.
253	R Core Team 2013. R: A Language and Environment for Statistical Computing. R
254	Foundation for Statistical Computing, Vienna, Austria. http://www.R-
255	project.org
256	Ramløv, H. 1999. Microclimate and variations in haemolymph composition in the
257	freezing-tolerant New Zealand alpine weta Hemideina maori Hutton
258	(Orthoptera: Stenopelmatidae). Journal of Comparative Physiology B, 169:
259	224-235.
260	Ramløv, H., Bedford, J., and Leader, J. 1992. Freezing tolerance of the New Zealand
261	alpine weta, Hemideina maori Hutton [Orthoptera; Stenopelmatidae]. Journal
262	of Thermal Biology, 17 : 51-54.
263	Ramløv, H. and Westh, P. 1993. Ice formation in the freeze tolerant alpine weta
264	Hemideina maori Hutton (Orthoptera, Stenopelmatidae). Cryo-Letters, 14:
265	169-176.
266	Sinclair, B.J., Addo-Beddiako, A., and Chown, S.L. 2003. Climatic variability and
267	the evolution of insect freeze tolerance. Biological Reviews, 78: 181–195.
268	Sinclair, B.J., Alvarado, L.E.C., and Ferguson, L.V. 2015. An invitation to measure
269	insect cold tolerance: methods, approaches, and workflow. Journal of Thermal
270	Biology, 53 : 180-197.

271	Sinclair, B.J., Gibbs, A.G., Lee, WK., Rajamohan, A., Roberts, S.P., and Socha, J.J.
272	2009. Synchrotron x-ray visualisation of ice formation in insects during lethal
273	and non-lethal freezing. PLoS One, 4: e8259.
274	Sinclair, B.J., Worland, M.R., and Wharton, D.A. 1999. Ice nucleation and freezing
275	tolerance in New Zealand alpine and lowland weta, Hemideina spp.
276	(Orthoptera; Stenopelmatidae). Physiological Entomology, 24: 56-63.
277	Sømme, L. 1986. Tolerance to low temperatures and desiccation in insects from
278	Andean paramos. Arctic and Alpine Research, 18: 253-259.
279	Tennessen, J.M., Barry, W.E., Cox, J., and Thummel, C.S. 2014. Methods for
280	studying metabolism in Drosophila. Methods, 68: 105-115.
281	Zachariassen, K.E. and Kristiansen, E. 2000. Ice nucleation and antinucleation in
282	nature. Cryobiology, 41 : 257-279.
283	
284	
285	

286 **Figure Legends**

287

	288	Figure 1. Survival	of C. monstrosa	nymphs 48 h after	being frozen for differe
--	-----	--------------------	-----------------	-------------------	--------------------------

periods of time at -6 °C (A) or at different temperatures for 1.5 h (B). N=4 for each 289

290 temperature and time point. Survival curves were calculated using a generalized

291 linear model.

292

293	Figure 2 . Mean \pm s.e.m. SCP of whole <i>C. monstrosa</i> nymphs, 20 µl 3% ascorbic
294	acid, hemolymph diluted 1:3 with 3% ascorbic acid, and tissues (c. 10 mg) in 20 µl

- 3% ascorbic acid. N=23 for whole body SCP, N=3 for all other samples. Different 295
- 296 letters indicate significant differences (α =0.05) in SCP (ANOVA with planned

257 contrasts. $1 \times 21 = 5.071$, $p < 0.001$	297	contrasts:	$F_{8.21}$	= 5.671,	<i>p</i> < 0.001)
--	-----	------------	------------	----------	------------------	---

298

. Survival of *C. monstrosa* nymphs 48 h after being frozen for different periods of time at -6 °C (A) or at different temperatures for 1.5 h (B). N=4 for each temperature and time point. Survival curves were calculated using a generalized linear model. 1979x1013mm (96 x 96 DPI)

Mean ± s.e.m. SCP of whole *C. monstrosa* nymphs, 20 μ l 3% ascorbic acid, hemolymph diluted 1:3 with 3% ascorbic acid, and tissues (c. 10 mg) in 20 μ l 3% ascorbic acid. N=23 for whole body SCP, N=3 for all other samples. Different letters indicate significant differences (a=0.05) in SCP (ANOVA with planned contrasts: F8,21 = 5.671, p < 0.001).

941x757mm (96 x 96 DPI)