82 research outputs found

    New hints towards a precision medicine strategy for IDH wild-type glioblastoma.

    Get PDF
    Glioblastoma represents the most common primary malignancy of the central nervous system in adults and remains a largely incurable disease. The elucidation of disease subtypes based on mutational profiling, gene expression and DNA methylation has so far failed to translate into improved clinical outcomes. However, new knowledge emerging from the subtyping effort in the IDH-wild-type setting may provide directions for future precision therapies. Here, we review recent learnings in the field, and further consider how tumour microenvironment differences across subtypes may reveal novel contexts of vulnerability. We discuss recent treatment approaches and ongoing trials in the IDH-wild-type glioblastoma setting, and propose an integrated discovery stratagem incorporating multi-omics, single-cell technologies and computational approaches

    Round-the-clock performance of coronary CT angiography for suspected acute coronary syndrome: Results from the BEACON trial

    Get PDF
    Objective: To assess the image quality of coronary CT angiography (CCTA) for suspected acute coronary syndrome (ACS) outside office hours. Methods: Patients with symptoms suggestive of an ACS underwent CCTA at the emergency department 24 hours, 7 days a week. A total of 118 patients, of whom 89 (75 %) presented during office hours (weekdays between 07:00 and 17:00) and 29 (25 %) outside office hours (weekdays between 17:00 and 07:00, weekends and holidays) underwent CCTA. Image quality was evaluated per coronary segment by two experienced readers and graded on an ordinal scale ranging from 1 to 3. Results: There were no significant differences in acquisition parameters, beta-blocker administration or heart rate between patients presenting during office hours and outside office hours. The median quality score per patient was 30.5 [interquartile range 26.0–33.5] for patients presenting during office hours in comparison to 27.5 [19.75–32.0] for patients presenting outside office hours (p=0.043). The number of non-evaluable segments was lower for patients presenting during office hours (0 [0–1.0] vs. 1.0 [0–4.0], p=0.009). Conclusion: Image quality of CCTA outside office hours in the diagnosis of suspected ACS is diminished. Key Points: • Quality scores were higher for coronary-CTA during office hours.• There were no differences in acquisition parameters.• There was a non-significant trend towards higher heart rates outside office hours.• Coronary-CTA on the ED requires state-of-the-art scanner technology and sufficiently trained staff.• Coronary-CTA on the ED needs preparation time and optimisation o

    Adenoviral gene transfer of angiostatic ATF-BPTI inhibits tumour growth

    Get PDF
    BACKGROUND: The outgrowth of new vessels – angiogenesis – in the tumour mass is considered to be a limiting factor of tumour growth. To inhibit the matrix lysis that is part of the tumour angiogenesis, we employed the chimeric protein mhATF-BPTI, composed of the receptor binding part of the urokinase (ATF) linked to an inhibitor of plasmin (BPTI). METHODS: For delivery, recombinant adenovirus encoding the transgene of interest was injected intravenously or locally into the tumour. The anti tumour effect of this compound was compared to that of human endostatin and of mhATF alone in two different rat bronchial carcinomas growing either as subcutaneous implants or as metastases. RESULTS: Significant inhibition of the tumour growth and decrease of the number of lung metastasis was achieved when the concentration of mhATF-BPTI at the tumour site was above 400 of ng / g tissue. This concentration could be achieved via production by the liver, only if permissive to the recombinant adenovirus. When the tumour cells could be transduced, local delivery of the vector was enough to obtain a response. In the case of metastasis, the capacity of the lung tissue to concentrate the encoded protein was essential to reach the required therapeutic levels. Further, endostatin or mhATF could not reproduce the effects of mhATF-BPTI, at similar concentrations (mhATF) and even at 10-fold higher concentration (endostatin). CONCLUSION: The ATF-BPTI was shown to inhibit tumour growth of different rat lung tumours when critical concentration was reached. In these tumour models, endostatin or ATF induce almost no tumour response

    Effects of High-Intensity Interval Training versus Continuous Training on Physical Fitness, Cardiovascular Function and Quality of Life in Heart Failure Patients

    Get PDF
    Introduction Physical fitness is an important prognostic factor in heart failure (HF). To improve fitness, different types of exercise have been explored, with recent focus on high-intensity interval training (HIT). We comprehensively compared effects of HIT versus continuous training (CT) in HF patients NYHA II-III on physical fitness, cardiovascular function and structure, and quality of life, and hypothesize that HIT leads to superior improvements compared to CT. Methods Twenty HF patients (male:female 19:1, 64±8 yrs, ejection fraction 38±6%) were allocated to 12-weeks of HIT (10*1-minute at 90% maximal workload—alternated by 2.5 minutes at 30% maximal workload) or CT (30 minutes at 60–75% of maximal workload). Before and after intervention, we examined physical fitness (incremental cycling test), cardiac function and structure (echocardiography), vascular function and structure (ultrasound) and quality of life (SF-36, Minnesota living with HF questionnaire (MLHFQ)). Results Training improved maximal workload, peak oxygen uptake (VO2peak) related to the predicted VO2peak, oxygen uptake at the anaerobic threshold, and maximal oxygen pulse (all P<0.05), whilst no differences were present between HIT and CT (N.S.). We found no major changes in resting cardiovascular function and structure. SF-36 physical function score improved after training (P<0.05), whilst SF-36 total score and MLHFQ did not change after training (N.S.). Conclusion Training induced significant improvements in parameters of physical fitness, although no evidence for superiority of HIT over CT was demonstrated. No major effect of training was found on cardiovascular structure and function or quality of life in HF patients NYHA II-III

    Potentiation of anti-cancer drug activity at low intratumoral pH induced by the mitochondrial inhibitor m-iodobenzylguanidine (MIBG) and its analogue benzylguanidine (BG)

    Get PDF
    Tumour-selective acidification is of potential interest for enhanced therapeutic gain of pH sensitive drugs. In this study, we investigated the feasibility of a tumour-selective reduction of the extracellular and intracellular pH and their effect on the tumour response of selected anti-cancer drugs. In an in vitro L1210 leukaemic cell model, we confirmed enhanced cytotoxicity of chlorambucil at low extracellular pH conditions. In contrast, the alkylating drugs melphalan and cisplatin, and bioreductive agents mitomycin C and its derivative EO9, required low intracellular pH conditions for enhanced activation. Furthermore, a strong and pH-independent synergism was observed between the pH-equilibrating drug nigericin and melphalan, of which the mechanism is unclear. In radiation-induced fibrosarcoma (RIF-1) tumour-bearing mice, the extracellular pH was reduced by the mitochondrial inhibitor m-iodobenzylguanidine (MIBG) or its analogue benzylguanidine (BG) plus glucose. To simultaneously reduce the intracellular pH, MIBG plus glucose were combined with the ionophore nigericin or the Na+/H+ exchanger inhibitor amiloride and the Na+-dependent HCO3−/Cl−exchanger inhibitor 4,4′-diisothiocyanostilbene-2,2′-disulphonic acid (DIDS). Biochemical studies confirmed an effective reduction of the extracellular pH to approximately 6.2, and anti-tumour responses to the interventions indicated a simultaneous reduction of the intracellular pH below 6.6 for at least 3 h. Combined reduction of extra- and intracellular tumour pH with melphalan increased the tumour regrowth time to 200% of the pretreatment volume from 5.7 ± 0.6 days for melphalan alone to 8.1 ± 0.7 days with pH manipulation (P< 0.05). Mitomycin C related tumour growth delay was enhanced by the combined interventions from 3.8 ± 0.5 to 5.2 ± 0.5 days (P< 0.05), but only in tumours of relatively large sizes. The interventions were non-toxic alone or in combination with the anti-cancer drugs and did not affect melphalan biodistribution. In conclusion, we have developed non-toxic interventions for sustained and selective reduction of extra- and intracellular tumour pH which potentiated the tumour responses to selected anti-cancer drugs. 1999 Cancer Research Campaig

    Directed Evolution Generates a Novel Oncolytic Virus for the Treatment of Colon Cancer

    Get PDF
    Background Viral-mediated oncolysis is a novel cancer therapeutic approach with the potential to be more effective and less toxic than current therapies due to the agents selective growth and amplification in tumor cells. To date, these agents have been highly safe in patients but have generally fallen short of their expected therapeutic value as monotherapies. Consequently, new approaches to generating highly potent oncolytic viruses are needed. To address this need, we developed a new method that we term “Directed Evolution” for creating highly potent oncolytic viruses. Methodology/Principal Findings Taking the “Directed Evolution” approach, viral diversity was increased by pooling an array of serotypes, then passaging the pools under conditions that invite recombination between serotypes. These highly diverse viral pools were then placed under stringent directed selection to generate and identify highly potent agents. ColoAd1, a complex Ad3/Ad11p chimeric virus, was the initial oncolytic virus derived by this novel methodology. ColoAd1, the first described non-Ad5-based oncolytic Ad, is 2–3 logs more potent and selective than the parent serotypes or the most clinically advanced oncolytic Ad, ONYX-015, in vitro. ColoAd1's efficacy was further tested in vivo in a colon cancer liver metastasis xenograft model following intravenous injection and its ex vivo selectivity was demonstrated on surgically-derived human colorectal tumor tissues. Lastly, we demonstrated the ability to arm ColoAd1 with an exogenous gene establishing the potential to impact the treatment of cancer on multiple levels from a single agent. Conclusions/Significance Using the “Directed Evolution” methodology, we have generated ColoAd1, a novel chimeric oncolytic virus. In vitro, this virus demonstrated a &gt;2 log increase in both potency and selectivity when compared to ONYX-015 on colon cancer cells. These results were further supported by in vivo and ex vivo studies. Furthermore, these results have validated this methodology as a new general approach for deriving clinically-relevant, highly potent anti-cancer virotherapies

    Recapitulation of tumor heterogeneity and molecular signatures in a 3D brain cancer model with decreased sensitivity to histone deacetylase inhibition

    Get PDF
    INTRODUCTION Physiologically relevant pre-clinical ex vivo models recapitulating CNS tumor micro-environmental complexity will aid development of biologically-targeted agents. We present comprehensive characterization of tumor aggregates generated using the 3D Rotary Cell Culture System (RCCS). METHODS CNS cancer cell lines were grown in conventional 2D cultures and the RCCS and comparison with a cohort of 53 pediatric high grade gliomas conducted by genome wide gene expression and microRNA arrays, coupled with immunohistochemistry, ex vivo magnetic resonance spectroscopy and drug sensitivity evaluation using the histone deacetylase inhibitor, Vorinostat. RESULTS Macroscopic RCCS aggregates recapitulated the heterogeneous morphology of brain tumors with a distinct proliferating rim, necrotic core and oxygen tension gradient. Gene expression and microRNA analyses revealed significant differences with 3D expression intermediate to 2D cultures and primary brain tumors. Metabolic profiling revealed differential profiles, with an increase in tumor specific metabolites in 3D. To evaluate the potential of the RCCS as a drug testing tool, we determined the efficacy of Vorinostat against aggregates of U87 and KNS42 glioblastoma cells. Both lines demonstrated markedly reduced sensitivity when assaying in 3D culture conditions compared to classical 2D drug screen approaches. CONCLUSIONS Our comprehensive characterization demonstrates that 3D RCCS culture of high grade brain tumor cells has profound effects on the genetic, epigenetic and metabolic profiles of cultured cells, with these cells residing as an intermediate phenotype between that of 2D cultures and primary tumors. There is a discrepancy between 2D culture and tumor molecular profiles, and RCCS partially re-capitulates tissue specific features, allowing drug testing in a more relevant ex vivo system

    Data_Sheet_2_Quantitative proteomics of small numbers of closely-related cells: Selection of the optimal method for a clinical setting.zip

    Get PDF
    Supplementary Table S10. Comparative analysis of -omics platforms Supplementary Table S10. Comparative analysis of -omics platforms Supplementary Table S7.xlsx Supplementary Table S8.xlsx Supplementary Table S9.xlsxMass spectrometry (MS)-based proteomics profiling has undoubtedly increased the knowledge about cellular processes and functions. However, its applicability for paucicellular sample analyses is currently limited. Although new approaches have been developed for single-cell studies, most of them have not (yet) been standardized and/or require highly specific (often home-built) devices, thereby limiting their broad implementation, particularly in non-specialized settings. To select an optimal MS-oriented proteomics approach applicable in translational research and clinical settings, we assessed 10 different sample preparation procedures in paucicellular samples of closely-related cell types. Particularly, five cell lysis protocols using different chemistries and mechanical forces were combined with two sample clean-up techniques (C18 filter- and SP3-based), followed by tandem mass tag (TMT)-based protein quantification. The evaluation was structured in three phases: first, cell lines from hematopoietic (THP-1) and non-hematopoietic (HT-29) origins were used to test the approaches showing the combination of a urea-based lysis buffer with the SP3 bead-based clean-up system as the best performer. Parameters such as reproducibility, accessibility, spatial distribution, ease of use, processing time and cost were considered. In the second phase, the performance of the method was tested on maturation-related cell populations: three different monocyte subsets from peripheral blood and, for the first time, macrophages/microglia (MAC) from glioblastoma samples, together with T cells from both tissues. The analysis of 50,000 cells down to only 2,500 cells revealed different protein expression profiles associated with the distinct cell populations. Accordingly, a closer relationship was observed between non-classical monocytes and MAC, with the latter showing the co-expression of M1 and M2 macrophage markers, although pro-tumoral and anti-inflammatory proteins were more represented. In the third phase, the results were validated by high-end spectral flow cytometry on paired monocyte/MAC samples to further determine the sensitivity of the MS approach selected. Finally, the feasibility of the method was proven in 194 additional samples corresponding to 38 different cell types, including cells from different tissue origins, cellular lineages, maturation stages and stimuli. In summary, we selected a reproducible, easy-to-implement sample preparation method for MS-based proteomic characterization of paucicellular samples, also applicable in the setting of functionally closely-related cell populations.Peer reviewe
    corecore