20 research outputs found

    Study of e+eppˉe^+e^- \rightarrow p\bar{p} in the vicinity of ψ(3770)\psi(3770)

    Full text link
    Using 2917 pb1\rm{pb}^{-1} of data accumulated at 3.773~GeV\rm{GeV}, 44.5~pb1\rm{pb}^{-1} of data accumulated at 3.65~GeV\rm{GeV} and data accumulated during a ψ(3770)\psi(3770) line-shape scan with the BESIII detector, the reaction e+eppˉe^+e^-\rightarrow p\bar{p} is studied considering a possible interference between resonant and continuum amplitudes. The cross section of e+eψ(3770)ppˉe^+e^-\rightarrow\psi(3770)\rightarrow p\bar{p}, σ(e+eψ(3770)ppˉ)\sigma(e^+e^-\rightarrow\psi(3770)\rightarrow p\bar{p}), is found to have two solutions, determined to be (0.059±0.032±0.0120.059\pm0.032\pm0.012) pb with the phase angle ϕ=(255.8±37.9±4.8)\phi = (255.8\pm37.9\pm4.8)^\circ (<<0.11 pb at the 90% confidence level), or σ(e+eψ(3770)ppˉ)=(2.57±0.12±0.12\sigma(e^+e^-\rightarrow\psi(3770)\rightarrow p\bar{p}) = (2.57\pm0.12\pm0.12) pb with ϕ=(266.9±6.1±0.9)\phi = (266.9\pm6.1\pm0.9)^\circ both of which agree with a destructive interference. Using the obtained cross section of ψ(3770)ppˉ\psi(3770)\rightarrow p\bar{p}, the cross section of ppˉψ(3770)p\bar{p}\rightarrow \psi(3770), which is useful information for the future PANDA experiment, is estimated to be either (9.8±5.79.8\pm5.7) nb (<17.2<17.2 nb at 90% C.L.) or (425.6±42.9)(425.6\pm42.9) nb

    Construction, assembly and tests of the ATLAS electromagnetic end-cap calorimeters

    Get PDF
    The construction and the assembly of the two end-caps of the ATLAS liquid argon electromagnetic calorimeter as well as their test and qualification programs are described. The work described here started at the beginning of 2001 and lasted for approximately three years. The results of the qualification tests performed before installation in the LHC ATLAS pit are given. The detectors are now installed in the ATLAS cavern, full of liquid argon and being commissioned. The complete detectors coverage is powered with high voltage and readout

    Search for emission of gamma-ray bursts with the ARGO-YBJ detector

    No full text
    The ARGO-YBJ experiment has been designed to decrease the energy threshold of tipical Extensive Air Shower arrays by exploiting the high altitude location (Tibet P.R. China, 4300 m a.s..l.) and the full coverage. The lower energy limit of the detector (a few GeV) is reached with the single particle technique, recording the counting rate at fixed time intervals. We present the first results concerning the search for emission from Gamma-Ray Bursts in coincidence with satellite detections
    corecore