1,356 research outputs found

    Low Carbon Abundance in Type Ia Supernovae

    Full text link
    We investigate the quantity and composition of unburned material in the outer layers of three normal Type Ia supernovae (SNe Ia): 2000dn, 2002cr and 20 04bw. Pristine matter from a white dwarf progenitor is expected to be a mixture of oxygen and carbon in approximately equal abundance. Using near-infrared (NIR, 0.7-2.5 microns) spectra, we find that oxygen is abundant while carbon is severely depleted with low upper limits in the outer third of the ejected mass. Strong features from the OI line at rest wavelength = 0.7773 microns are observed through a wide range of expansion velocities approx. 9,000 - 18,000 km/s. This large velocity domain corresponds to a physical region of the supernova with a large radial depth. We show that the ionization of C and O will be substantially the same in this region. CI lines in the NIR are expected to be 7-50 times stronger than those from OI but there is only marginal evidence of CI in the spectra and none of CII. We deduce that for these three normal SNe Ia, oxygen is more abundant than carbon by factors of 100 - 1,000. MgII is also detected in a velocity range similar to that of OI. The presence of O and Mg combined with the absence of C indicates that for these SNe Ia, nuclear burning has reached all but the extreme outer layers; any unburned material must have expansion velocities greater than 18,000 km/s. This result favors deflagration to detonation transition (DD) models over pure deflagration models for SNe Ia.Comment: accepted for publication in Ap

    Cyclotron effective mass of 2D electron layer at GaAs/AlGaAs heterojunction subject to in-plane magnetic fields

    Full text link
    We have found that Fermi contours of a two-dimensional electron gas at \rmGaAs/Al_xGa_{1-x}As interface deviate from a standard circular shape under the combined influence of an approximately triangular confining potential and the strong in-plane magnetic field. The distortion of a Fermi contour manifests itself through an increase of the electron effective cyclotron mass which has been measured by the cyclotron resonance in the far-infrared transmission spectra and by the thermal damping of Shubnikov-de Haas oscillations in tilted magnetic fields with an in-plane component up to 5 T. The observed increase of the cyclotron effective mass reaches almost 5 \% of its zero field value which is in good agreement with results of a self-consistent calculation.Comment: 4 pages, Revtex, figures can be obtained on request from [email protected]; to appear in Phys. Rev. B (in press). No changes, the corrupted submission replace

    The Transitional Stripped-Envelope SN 2008ax: Spectral Evolution and Evidence for Large Asphericity

    Get PDF
    Supernova (SN) 2008ax in NGC 4490 was discovered within hours after shock breakout, presenting the rare opportunity to study a core-collapse SN beginning with the initial envelope-cooling phase immediately following shock breakout. We present an extensive sequence of optical and near-infrared spectra, as well as three epochs of optical spectropolarimetry. Our initial spectra, taken two days after shock breakout, are dominated by hydrogen Balmer lines at high velocity. However, by maximum light, He I lines dominated the optical and near-infrared spectra, which closely resembled those of normal Type Ib supernovae (SNe Ib) such as SN 1999ex. This spectroscopic transition defines Type IIb supernovae, but the strong similarity of SN 2008ax to normal SNe Ib beginning near maximum light, including an absorption feature near 6270A due to H-alpha at high velocities, suggests that many objects classified as SNe Ib in the literature may have ejected similar amounts of hydrogen as SN 2008ax, roughly a few x 0.01 M_sun. Early-time spectropolarimetry (6 and 9 days after shock breakout) revealed strong line polarization modulations of 3.4% across H-alpha, indicating the presence of large asphericities in the outer ejecta. The continuum shares a common polarization angle with the hydrogen, helium, and oxygen lines, while the calcium and iron absorptions are oriented at different angles. This is clear evidence of deviations from axisymmetry even in the outer ejecta. Intrinsic continuum polarization of 0.64% only nine days after shock breakout shows that the outer layers of the ejecta were quite aspherical. A single epoch of late-time spectropolarimetry, as well as the shapes of the nebular line profiles, demonstrate that asphericities extended from the outermost layers all the way down to the center of this SN. [Abridged]Comment: 24 pages, 21 figures, 4 tables, appendix, minor revisions to match version accepted by Ap

    The Type Ic Supernova 1994I in M51: Detection of Helium and Spectral Evolution

    Get PDF
    We present a series of spectra of SN 1994I in M51, starting 1 week prior to maximum brightness. The nebular phase began about 2 months after the explosion; together with the rapid decline of the optical light, this suggests that the ejected mass was small. Although lines of He I in the optical region are weak or absent, consistent with the Type Ic classification, we detect strong He I λ10830 absorption during the first month past maximum. Thus, if SN 1994I is a typical Type Ic supernova, the atmospheres of these objects cannot be completely devoid of helium. The emission-line widths are smaller than predicted by the model of Nomoto and coworkers, in which the iron core of a low-mass carbon-oxygen star collapses. They are, however, larger than in Type Ib supernovae

    Chandra Observations of Type Ia Supernovae: Upper Limits to the X-ray Flux of SN 2002bo, SN 2002ic, SN 2005gj, and SN 2005ke

    Full text link
    We set sensitive upper limits to the X-ray emission of four Type Ia supernovae (SNe Ia) using the Chandra X-ray Observatory. SN 2002bo, a normal, although reddened, nearby SN Ia, was observed 9.3 days after explosion. For an absorbed, high temperature bremsstrahlung model the flux limits are 3.2E-16 ergs/cm^2/s (0.5-2 keV band) and 4.1E-15 ergs/cm^2/s (2-10 keV band). Using conservative model assumptions and a 10 km/s wind speed, we derive a mass loss rate of \dot{M} ~ 2E-5 M_\odot/yr, which is comparable to limits set by the non-detection of Halpha lines from other SNe Ia. Two other objects, SN 2002ic and SN 2005gj, observed 260 and 80 days after explosion, respectively, are the only SNe Ia showing evidence for circumstellar interaction. The SN 2002ic X-ray flux upper limits are ~4 times below predictions of the interaction model currently favored to explain the bright optical emission. To resolve this discrepancy we invoke the mixing of cool dense ejecta fragments into the forward shock region, which produces increased X-ray absorption. A modest amount of mixing allows us to accommodate the Chandra upper limit. SN 2005gj is less well studied at this time. Assuming the same circumstellar environment as for SN 2002i, the X-ray flux upper limits for SN 2005gj are ~4 times below the predictions, suggesting that mixing of cool ejecta into the forward shock has also occurred here. Our reanalysis of Swift and Chandra data on SN 2005ke does not confirm a previously reported X-ray detection. The host galaxies NGC 3190 (SN 2002bo) and NGC 1371 (SN 2005ke) each harbor a low luminosity (L_X ~ 3-4E40 ergs/s) active nucleus in addition to wide-spread diffuse soft X-ray emission.Comment: 16 pages, to appear in ApJ (20 Nov 2007

    K Corrections For Type Ia Supernovae and a Test for Spatial Variation of the Hubble Constant

    Get PDF
    Cross-filter K corrections for a sample of "normal" Type Ia supernovae (SNe) have been calculated for a range of epochs. With appropriate filter choices, the combined statistical and systematic K correction dispersion of the full sample lies within 0.05 mag for redshifts z<0.7. This narrow dispersion of the calculated K correction allows the Type Ia to be used as a cosmological probe. We use the K corrections with observations of seven SNe at redshifts 0.3 < z <0.5 to bound the possible difference between the locally measured Hubble constant (H_L) and the true cosmological Hubble constant (H_0).Comment: 6 pages, 3 Postscript figures, uuencoded uses crckapb.sty and psfig.sty. To appear in Thermonuclear Supernovae (NATO ASI), eds. R. Canal, P. Ruiz-LaPuente, and J. Isern. Postscript version is also available at http://www-supernova.lbl.gov

    Direct Confirmation of the Asymmetry of the Cas A Supernova with Light Echoes

    Full text link
    We report the first detection of asymmetry in a supernova (SN) photosphere based on SN light echo (LE) spectra of Cas A from the different perspectives of dust concentrations on its LE ellipsoid. New LEs are reported based on difference images, and optical spectra of these LEs are analyzed and compared. After properly accounting for the effects of finite dust-filament extent and inclination, we find one field where the He I and H alpha features are blueshifted by an additional ~4000 km/s relative to other spectra and to the spectra of the Type IIb SN 1993J. That same direction does not show any shift relative to other Cas A LE spectra in the Ca II near-infrared triplet feature. We compare the perspectives of the Cas A LE dust concentrations with recent three-dimensional modeling of the SN remnant (SNR) and note that the location having the blueshifted He I and H alpha features is roughly in the direction of an Fe-rich outflow and in the opposite direction of the motion of the compact object at the center of the SNR. We conclude that Cas A was an intrinsically asymmetric SN. Future LE spectroscopy of this object, and of other historical SNe, will provide additional insight into the connection of explosion mechanism to SN to SNR, as well as give crucial observational evidence regarding how stars explode.Comment: 13 pages, 7 figures, accepted for publication in Ap
    • …
    corecore