862 research outputs found
A study to analyze and develop design criteria for a flight-concept prototype vapor diffusion water reclamation unit Final report, Apr. 1967 - Apr. 1968
Design criteria and mathematical model for vapor diffusion water reclamation uni
Enantioselective Synthesis of 15-Deoxy-Δ¹²,¹⁴-Prostaglandin J₂
An enantioselective synthesis of 15-deoxy-Δ¹²,¹⁴-prostaglandin J₂ is reported. The synthesis begins with the preparation of enantiopure 3-oxodicyclopentadiene by a lipase-mediated kinetic resolution. A three-component coupling followed by a retro-Diels–Alder reaction provides the C8 stereochemistry of the prostaglandin skeleton with high enantioselectivity. Stereoretentive olefin metathesis followed by a Pinnick oxidation affords 15-deoxy-Δ¹²,¹⁴-prostaglandin J₂ in high enantiopurity
Catalytic Reduction of Alkyl and Aryl Bromides Using Propan-2-ol
Milstein's complex, (PNN)RuHCl(CO), catalyzes the efficient reduction of aryl and alkyl halides under relatively mild conditions by using propan-2-ol and a base. Sterically hindered tertiary and neopentyl substrates are reduced efficiently, as well as more functionalized aryl and alkyl bromides. The reduction process is proposed to occur by radical abstraction/hydrodehalogenation steps at ruthenium. Our research represents a safer and more sustainable alternative to typical silane, lithium aluminium hydride, and tin-based conditions for these reductions
Recommended from our members
Final Report for "Simulation Tools for Parallel Microwave Particle in Cell Modeling"
Transport of high-power rf fields and the subsequent deposition of rf power into plasma is an important component of developing tokamak fusion energy. Two limitations on rf heating are: (i) breakdown of the metallic structures used to deliver rf power to the plasma, and (ii) a detailed understanding of how rf power couples into a plasma. Computer simulation is a main tool for helping solve both of these problems, but one of the premier tools, VORPAL, is traditionally too difficult to use for non-experts. During this Phase II project, we developed the VorpalView user interface tool. This tool allows Department of Energy researchers a fully graphical interface for analyzing VORPAL output to more easily model rf power delivery and deposition in plasmas
NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist
Tables of ^1H and ^(13)C NMR chemical shifts have been compiled for common organic compounds often used as reagents or found as products or contaminants in deuterated organic solvents. Building upon the work of Gottlieb, Kotlyar, and Nudelman in the Journal of Organic Chemistry, signals for common impurities are now reported in additional NMR solvents (tetrahydrofuran-d_8, toluene-d_8, dichloromethane-d_2, chlorobenzene-d_5, and 2,2,2-trifluoroethanol-d_3) which are frequently used in organometallic laboratories. Chemical shifts for other organics which are often used as reagents or internal standards or are found as products in organometallic chemistry are also reported for all the listed solvents
High resolution coherent population trapping on a single hole spin in a semiconductor
We report high resolution coherent population trapping on a single hole spin
in a semiconductor quantum dot. The absorption dip signifying the formation of
a dark state exhibits an atomic physics-like dip width of just 10 MHz. We
observe fluctuations in the absolute frequency of the absorption dip, evidence
of very slow spin dephasing. We identify this process as charge noise by,
first, demonstrating that the hole spin g-factor in this configuration
(in-plane magnetic field) is strongly dependent on the vertical electric field,
and second, by characterizing the charge noise through its effects on the
optical transition frequency. An important conclusion is that charge noise is
an important hole spin dephasing process
Enantioselective Total Synthesis of Nigelladine A via Late-Stage C–H Oxidation Enabled by an Engineered P450 Enzyme
An enantioselective total synthesis of the norditerpenoid alkaloid nigelladine A is described. Strategically, the synthesis relies on a late-stage C–H oxidation of an advanced intermediate. While traditional chemical methods failed to deliver the desired outcome, an engineered cytochrome P450 enzyme was employed to effect a chemo- and regioselective allylic C–H oxidation in the presence of four oxidizable positions. The enzyme variant was readily identified from a focused library of three enzymes, allowing for completion of the synthesis without the need for extensive screening
The Catalytic Asymmetric Total Synthesis of Elatol
Described in this report is the first total synthesis of elatol, a halogenated sesquiterpene in the chamigrene natural product family. The key disconnections in our synthetic approach include an enantioselective decarboxylative allylation to form the all-carbon quaternary stereocenter and a ring-closing olefin metathesis to concomitantly form the spirocyclic core as well as the fully substituted chlorinated olefin. This strategy represents a general platform for accessing the chamigrene natural product family, as demonstrated by the synthesis of (+)-laurencenone B as an intermediate in our route
Dual time-point FDG PET/CT for differentiating benign from malignant solitary pulmonary nodules in a TB endemic area
Objective. Fluorodeoxyglucose (FDG)-positron emission tomography (PET) is an accurate non-invasive imaging test for differentiating benign from malignant solitary pulmonary nodules (SPNs). We aimed to assess its diagnostic accuracy for differentiating benign from malignant SPNs in a tuberculosis (TB)-endemic area. Methods. Thirty patients, 22 men and 8 women, mean age 60 years, underwent dual time point FDG-PET/computed tomography (CT) imaging, followed by histological examination of the SPN. Maximum standard uptake values (SUVmax) with the greatest uptake in the lesion were calculated for two time points (SUV1 and SUV2), and the percentage change over time per lesion was calculated (%DSUV). Routine histological findings served as the gold standard. Results. Histological examination showed that 14 lesions were malignant and 16 benign, 12 of which were TB. SUVmax for benign and malignant lesions were 11.02 (standard deviation (SD) 6.6) v. 10.86 (SD 8.9); however, when tuberculomas were excluded from the analysis, a significant difference in mean SUV1max values between benign and malignant lesions was observed (p=0.0059). Using an SUVmax cut-off value of 2.5, a sensitivity of 85.7% and a specificity of 25% was obtained. Omitting the TB patients from analysis resulted in a sensitivity of 85.7% and a specificity of 100%. Mean %DSUV of benign lesions did not differ significantly from mean %DSUV of malignant lesions (17.1% (SD 16.3%) v. 19.4% (SD 23.7%)). Using a cut-off of %DSUV >10% as indicative of malignancy, a sensitivity of 85.7% and a specificity of 50% was obtained. Omitting the TB patients from the analysis yielded a sensitivity of 85.7% and a specificity of 75%. Conclusion. Our findings suggest that FDG-PET cannot distinguish malignancy from tuberculoma and therefore cannot reliably be used to reduce futile biopsy/thoracotomy
- …