21 research outputs found

    Nonlinear optical properties of asymmetric double-graded quantum wells

    No full text
    In this work, the effects of the structure parameters, such as the central barrier thickness and the aluminium concentrations x, on the linear and nonlinear intersubband optical absorption coefficients and refractive index changes of the asymmetric double-graded quantum wells (ADGQWs) under the presence of an external static electric field are studied theoretically. The nonlinear optical properties of the ADGQWs are obtained using the compact-density matrix approach and iterative method. The numerical results obtained from the present work show that the external static electric field and the structure parameters play an important role in the optical properties of ADGQWs. Depending on the asymmetric nature of the confinement potential, in an electric field of <= 20 kV/cm, the overlap between electronic wave functions decreases with increasing field whereas it increases for larger field values. The tunability of intersubband transitions can be applied to optical modulators and various device applications based on the optical transitions of electrons

    Nonlinear optical properties of asymmetric double-graded quantum wells

    No full text
    In this work, the effects of the structure parameters, such as the central barrier thickness and the aluminium concentrations x, on the linear and nonlinear intersubband optical absorption coefficients and refractive index changes of the asymmetric double-graded quantum wells (ADGQWs) under the presence of an external static electric field are studied theoretically. The nonlinear optical properties of the ADGQWs are obtained using the compact-density matrix approach and iterative method. The numerical results obtained from the present work show that the external static electric field and the structure parameters play an important role in the optical properties of ADGQWs. Depending on the asymmetric nature of the confinement potential, in an electric field of <= 20 kV/cm, the overlap between electronic wave functions decreases with increasing field whereas it increases for larger field values. The tunability of intersubband transitions can be applied to optical modulators and various device applications based on the optical transitions of electrons

    Forage yield and lodging traits in peas (Pisum sativum L.) with different leaf types

    No full text
    Two semi-leafless and four leafed pea (Pisum sativum L.) genotypes were evaluated for plant height, lodging scores, and forage yield in eight diverse locations with typical Mediterranean or Mediterranean-type climate in the 2001-2002 and 2002-2003 growing seasons. The genotypes used in this study were forage type with indeterminate growing habit. Significant differences among pea genotypes were found for all traits over years and locations. All interactions which related to G × E interaction showed significance (P&gt;0.01) for all traits. The forage yield of the pea genotypes averaged 26605 kg ha-1 and the highest yield was obtained from the leafed genotype Urunlu. Its forage yield reached to 35970 kg ha-1 yield level at Samsun location

    Genotype x environment interaction and stability analysis for dry matter and seed yield in field pea (Pisum sativum L.)

    No full text
    WOS: 000264170200010The objectives of this study were to evaluate dry matter (DM) yield and seed yield of six leafed and semi-leafless pea (Pisum sativum L.) genotypes, and to compare them for these traits. Evaluation of genotype x environment (G x E) interaction, stability and cluster analysis were also carried out at eight diverse locations with typical Mediterranean and Mediterranean-type climate during the 2001-2002 and 2002-2003 growing seasons. Significant differences were found among the pea genotypes for DM and seed yield on individual years and combined over years, and in all locations. All interactions which related to G x E interaction showed significance (P>0.001) for DM and seed yield. The highest yield (4789 kg ha(-1)) was obtained from the leafed genotype 'Urunlu'. However, stability analysis indicated that for DM yield, the leafed genotypes 'Golyazi' and 'Urunlu' should be grown in low yielding and high yielding environments, respectively. Cluster analysis, based on grouping locations, showed that P101 was the preferred variety in low yielding environments, and P98, in high yielding ones. It was suggested that the use of both stability and cluster analyses might give better results. Comparison of cluster and stability analyses showed that the stability analysis fails to recommend cultivars to different regions where yield potential showed significant differences. It seems, however, that cluster analysis could be a powerful tool to examine G x E interaction. If the number of environments was sufficient, a separate stability analysis could be run in each cluster.Uludag University Research FundUludag University [2002/76]The authors wish to thank Prof. Dr. Vincent Pantalone, Plant Sciences Dept., University of Tennessee, USA for critical reading of the manuscript and his valuable suggestions. The Bursa location of this study was supported by Uludag University Research Fund (2002/76)

    Forage yield and lodging traits in peas (Pisum sativum L.) with different leaf types

    No full text
    Two semi-leafless and four leafed pea (Pisum sativum L.) genotypes were evaluated for plant height, lodging scores, and forage yield in eight diverse locations with typical Mediterranean or Mediterranean-type climate in the 2001-2002 and 2002-2003 growing seasons. The genotypes used in this study were forage type with indeterminate growing habit. Significant differences among pea genotypes were found for all traits over years and locations. All interactions which related to G × E interaction showed significance (P&gt;0.01) for all traits. The forage yield of the pea genotypes averaged 26605 kg ha-1 and the highest yield was obtained from the leafed genotype Urunlu. Its forage yield reached to 35970 kg ha-1 yield level at Samsun location

    Hidden Concepts in the History and Philosophy of Origins-of-Life Studies: a Workshop Report

    No full text
    In this review, we describe some of the central philosophical issues facing origins-of-life research and provide a targeted history of the developments that have led to the multidisciplinary field of origins-of-life studies. We outline these issues and developments to guide researchers and students from all fields. With respect to philosophy, we provide brief summaries of debates with respect to (1) definitions (or theories) of life, what life is and how research should be conducted in the absence of an accepted theory of life, (2) the distinctions between synthetic, historical, and universal projects in origins-of-life studies, issues with strategies for inferring the origins of life, such as (3) the nature of the first living entities (the "bottom up" approach) and (4) how to infer the nature of the last universal common ancestor (the "top down" approach), and (5) the status of origins of life as a science. Each of these debates influences the others. Although there are clusters of researchers that agree on some answers to these issues, each of these debates is still open. With respect to history, we outline several independent paths that have led to some of the approaches now prevalent in origins-of-life studies. These include one path from early views of life through the scientific revolutions brought about by Linnaeus (von Linn.), Wöhler, Miller, and others. In this approach, new theories, tools, and evidence guide new thoughts about the nature of life and its origin. We also describe another family of paths motivated by a" circularity" approach to life, which is guided by such thinkers as Maturana & Varela, Gánti, Rosen, and others. These views echo ideas developed by Kant and Aristotle, though they do so using modern science in ways that produce exciting avenues of investigation. By exploring the history of these ideas, we can see how many of the issues that currently interest us have been guided by the contexts in which the ideas were developed. The disciplinary backgrounds of each of these scholars has influenced the questions they sought to answer, the experiments they envisioned, and the kinds of data they collected. We conclude by encouraging scientists and scholars in the humanities and social sciences to explore ways in which they can interact to provide a deeper understanding of the conceptual assumptions, structure, and history of origins-of-life research. This may be useful to help frame future research agendas and bring awareness to the multifaceted issues facing this challenging scientific question

    Hidden Concepts in the History and Philosophy of Origins-of-Life Studies: a Workshop Report

    No full text
    In this review, we describe some of the central philosophical issues facing origins-of-life research and provide a targeted history of the developments that have led to the multidisciplinary field of origins-of-life studies. We outline these issues and developments to guide researchers and students from all fields. With respect to philosophy, we provide brief summaries of debates with respect to (1) definitions (or theories) of life, what life is and how research should be conducted in the absence of an accepted theory of life, (2) the distinctions between synthetic, historical, and universal projects in origins-of-life studies, issues with strategies for inferring the origins of life, such as (3) the nature of the first living entities (the "bottom up" approach) and (4) how to infer the nature of the last universal common ancestor (the "top down" approach), and (5) the status of origins of life as a science. Each of these debates influences the others. Although there are clusters of researchers that agree on some answers to these issues, each of these debates is still open. With respect to history, we outline several independent paths that have led to some of the approaches now prevalent in origins-of-life studies. These include one path from early views of life through the scientific revolutions brought about by Linnaeus (von Linn.), Wöhler, Miller, and others. In this approach, new theories, tools, and evidence guide new thoughts about the nature of life and its origin. We also describe another family of paths motivated by a" circularity" approach to life, which is guided by such thinkers as Maturana & Varela, Gánti, Rosen, and others. These views echo ideas developed by Kant and Aristotle, though they do so using modern science in ways that produce exciting avenues of investigation. By exploring the history of these ideas, we can see how many of the issues that currently interest us have been guided by the contexts in which the ideas were developed. The disciplinary backgrounds of each of these scholars has influenced the questions they sought to answer, the experiments they envisioned, and the kinds of data they collected. We conclude by encouraging scientists and scholars in the humanities and social sciences to explore ways in which they can interact to provide a deeper understanding of the conceptual assumptions, structure, and history of origins-of-life research. This may be useful to help frame future research agendas and bring awareness to the multifaceted issues facing this challenging scientific question
    corecore