1,119 research outputs found

    Phase Ib study of eprenetapopt (APR-246) in combination with pembrolizumab in patients with advanced or metastatic solid tumors

    Get PDF
    BACKGROUND: We conducted a phase I, multicenter, open-label, dose-finding, and expansion study to determine the safety and preliminary efficacy of eprenetapopt (APR-246) combined with pembrolizumab in patients with advanced/metastatic solid tumors (ClinicalTrials.gov NCT04383938). PATIENTS AND METHODS: For dose-finding, requirements were non-central nervous system primary solid tumor, intolerant to/progressed after ≄1 line of treatment, and eligible for pembrolizumab; for expansion: (i) gastric/gastroesophageal junction tumor, intolerant to/progressed after first-line treatment, and no prior anti-programmed cell death receptor-1 (PD-1)/programmed death-ligand 1 (PD-L1) therapy; (ii) bladder/urothelial tumor, intolerant to/progressed after first-line cisplatin-based chemotherapy, and no prior anti-PD-1/PD-L1 therapy; (iii) non-small-cell lung cancer (NSCLC) with previous anti-PD-1/PD-L1 therapy. Patients received eprenetapopt 4.5 g/day intravenously (IV) on days 1-4 with pembrolizumab 200 mg IV on day 3 in each 21-day cycle. Primary endpoints were dose-limiting toxicity (DLT), adverse events (AEs), and recommended phase II dose (RP2D) of eprenetapopt. RESULTS: Forty patients were enrolled (median age 66 years; range 27-85) and 37 received eprenetapopt plus pembrolizumab. No DLTs were reported and the RP2D for eprenetapopt in combination was 4.5 g/day IV on days 1-4. The most common eprenetapopt-related AEs were dizziness (35.1%), nausea (32.4%), and vomiting (29.7%). AEs leading to eprenetapopt discontinuation occurred in 2/37 patients (5.4%). In efficacy-assessable patients (n = 29), one achieved complete response (urothelial cancer), two achieved partial responses (NSCLC, urothelial cancer), and six patients had stable disease. CONCLUSIONS: The eprenetapopt plus pembrolizumab combination was well tolerated with an acceptable safety profile and showed clinical activity in patients with solid tumors

    Margetuximab with retifanlimab as first-line therapy in HER2+/PD-L1+ unresectable or metastatic gastroesophageal adenocarcinoma: MAHOGANY cohort A

    Get PDF
    BACKGROUND: Human epidermal growth factor receptor 2 (HER2)-positive metastatic gastric and gastroesophageal adenocarcinoma (GEA) is globally treated with chemotherapy plus trastuzumab. Novel therapeutic strategies strive to not only optimize efficacy, but also limit toxicities. In MAHOGANY cohort A, margetuximab, an Fc-engineered, anti-HER2 monoclonal antibody (mAb) was combined with retifanlimab, an anti-programmed cell death protein 1 mAb, in the first-line HER2-positive/programmed death-ligand 1 (PD-L1)-positive GEA. PATIENTS AND METHODS: MAHOGANY cohort A part 1 is a single-arm trial to evaluate margetuximab plus retifanlimab in patients with HER2 immunohistochemistry 3+, PD-L1-positive (combined positive score ≄1%), and non-microsatellite instability-high tumors. Primary objectives for cohort A were safety/tolerability and the confirmed objective response rate (ORR). RESULTS: As of 3 August 2021, 43 patients were enrolled and received margetuximab/retifanlimab. Nine grade 3 treatment-related adverse events (TRAEs) were reported in eight (18.6%) patients and eight serious TRAEs in seven (16.3%) patients. There were no grade 4/5 TRAEs. Three patients discontinued margetuximab/retifanlimab because of immune-related adverse events. The ORR by independent assessment was 53% [21/40 (95% confidence interval (CI) 36.1-68.5)], with a median duration of response of 10.3 months (95% CI 4.6-not evaluable); disease control rate was 73% [29/40 (95% CI 56.1-85.4)]. The study sponsor discontinued the study in advance of the planned enrollment when it became apparent that the study design would no longer meet the requirements for drug approval because of recent advances in the treatment of GEA. CONCLUSIONS: The chemotherapy-free regimen of combined margetuximab/retifanlimab as first-line treatment in double biomarker-selected patients demonstrated a favorable toxicity profile compared with historical outcomes using chemotherapy plus trastuzumab. The ORR observed in this study compares favorably versus ORR observed with other chemotherapy-free approaches

    Neratinib + fulvestrant + trastuzumab for HR-positive, HER2-negative, HER2-mutant metastatic breast cancer: Outcomes and biomarker analysis from the SUMMIT trial

    Get PDF
    BACKGROUND: HER2 mutations are targetable alterations in patients with hormone receptor-positive (HR+) metastatic breast cancer (MBC). In the SUMMIT basket study, patients with HER2-mutant MBC received neratinib monotherapy, neratinib + fulvestrant, or neratinib + fulvestrant + trastuzumab (N + F + T). We report results from 71 patients with HR+, HER2-mutant MBC, including 21 (seven in each arm) from a randomized substudy of fulvestrant versus fulvestrant + trastuzumab (F + T) versus N + F + T. PATIENTS AND METHODS: Patients with HR+ HER2-negative MBC with activating HER2 mutation(s) and prior cyclin-dependent kinase 4/6 inhibitor (CDK4/6i) therapy received N + F + T (oral neratinib 240 mg/day with loperamide prophylaxis, intramuscular fulvestrant 500 mg on days 1, 15, and 29 of cycle 1 then q4w, intravenous trastuzumab 8 mg/kg then 6 mg/kg q3w) or F + T or fulvestrant alone. Those whose disease progressed on F + T or fulvestrant could cross-over to N + F + T. Efficacy endpoints included investigator-assessed objective response rate (ORR), clinical benefit rate (RECIST v1.1), duration of response, and progression-free survival (PFS). Plasma and/or formalin-fixed paraffin-embedded tissue samples were collected at baseline; plasma was collected during and at end of treatment. Extracted DNA was analyzed by next-generation sequencing. RESULTS: ORR for 57 N + F + T-treated patients was 39% [95% confidence interval (CI) 26% to 52%); median PFS was 8.3 months (95% CI 6.0-15.1 months). No responses occurred in fulvestrant- or F + T-treated patients; responses in patients crossing over to N + F + T supported the requirement for neratinib in the triplet. Responses were observed in patients with ductal and lobular histology, 1 or ≄1 HER2 mutations, and co-occurring HER3 mutations. Longitudinal circulating tumor DNA sequencing revealed acquisition of additional HER2 alterations, and mutations in genes including PIK3CA, enabling further precision targeting and possible re-response. CONCLUSIONS: The benefit of N + F + T for HR+ HER2-mutant MBC after progression on CDK4/6is is clinically meaningful and, based on this study, N + F + T has been included in the National Comprehensive Cancer Network treatment guidelines. SUMMIT has improved our understanding of the translational implications of targeting HER2 mutations with neratinib-based therapy

    Measurement of time-dependent CP violation parameters in B0 → KS0 KS0 KS0 decays at Belle

    Get PDF
    We measure the time-dependent CP violation parameters in B0→KS0KS0KS0 decays using 772×106BBÂŻ pairs collected at the ϒ(4S) resonance with the Belle detector at the KEKB asymmetric-energy e+e- collider. The obtained mixing-induced and direct CP asymmetries are -0.71±0.23 (stat)±0.05 (syst) and 0.12±0.16 (stat)±0.05 (syst), respectively. These values are consistent with the Standard Model predictions. The significance of CP violation differs from zero by 2.5 standard deviations. © 2021 authors. Published by the American Physical Society

    Potential therapeutic applications of microbial surface-activecompounds

    Get PDF
    Numerous investigations of microbial surface-active compounds or biosurfactants over the past two decades have led to the discovery of many interesting physicochemical and biological properties including antimicrobial, anti-biofilm and therapeutic among many other pharmaceutical and medical applications. Microbial control and inhibition strategies involving the use of antibiotics are becoming continually challenged due to the emergence of resistant strains mostly embedded within biofilm formations that are difficult to eradicate. Different aspects of antimicrobial and anti-biofilm control are becoming issues of increasing importance in clinical, hygiene, therapeutic and other applications. Biosurfactants research has resulted in increasing interest into their ability to inhibit microbial activity and disperse microbial biofilms in addition to being mostly nontoxic and stable at extremes conditions. Some biosurfactants are now in use in clinical, food and environmental fields, whilst others remain under investigation and development. The dispersal properties of biosurfactants have been shown to rival that of conventional inhibitory agents against bacterial, fungal and yeast biofilms as well as viral membrane structures. This presents them as potential candidates for future uses in new generations of antimicrobial agents or as adjuvants to other antibiotics and use as preservatives for microbial suppression and eradication strategies

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)

    The disruption of proteostasis in neurodegenerative diseases

    Get PDF
    Cells count on surveillance systems to monitor and protect the cellular proteome which, besides being highly heterogeneous, is constantly being challenged by intrinsic and environmental factors. In this context, the proteostasis network (PN) is essential to achieve a stable and functional proteome. Disruption of the PN is associated with aging and can lead to and/or potentiate the occurrence of many neurodegenerative diseases (ND). This not only emphasizes the importance of the PN in health span and aging but also how its modulation can be a potential target for intervention and treatment of human diseases.info:eu-repo/semantics/publishedVersio

    Biophilic architecture: a review of the rationale and outcomes

    Get PDF
    Contemporary cities have high stress levels, mental health issues, high crime levels and ill health, while the built environment shows increasing problems with urban heat island effects and air and water pollution. Emerging from these concerns is a new set of design principles and practices where nature needs to play a bigger part called “biophilic architecture”. This design approach asserts that humans have an innate connection with nature that can assist to make buildings and cities more effective human abodes. This paper examines the evidence for this innate human psychological and physiological link to nature and then assesses the emerging research supporting the multiple social, environmental and economic benefits of biophilic architecture

    MicroMotility: State of the art, recent accomplishments and perspectives on the mathematical modeling of bio-motility at microscopic scales

    Get PDF
    Mathematical modeling and quantitative study of biological motility (in particular, of motility at microscopic scales) is producing new biophysical insight and is offering opportunities for new discoveries at the level of both fundamental science and technology. These range from the explanation of how complex behavior at the level of a single organism emerges from body architecture, to the understanding of collective phenomena in groups of organisms and tissues, and of how these forms of swarm intelligence can be controlled and harnessed in engineering applications, to the elucidation of processes of fundamental biological relevance at the cellular and sub-cellular level. In this paper, some of the most exciting new developments in the fields of locomotion of unicellular organisms, of soft adhesive locomotion across scales, of the study of pore translocation properties of knotted DNA, of the development of synthetic active solid sheets, of the mechanics of the unjamming transition in dense cell collectives, of the mechanics of cell sheet folding in volvocalean algae, and of the self-propulsion of topological defects in active matter are discussed. For each of these topics, we provide a brief state of the art, an example of recent achievements, and some directions for future research
    • 

    corecore