1,752 research outputs found

    Geometrically Induced Gauge Structure on Manifolds Embedded in a Higher Dimensional Space

    Get PDF
    We explain in a context different from that of Maraner the formalism for describing motion of a particle, under the influence of a confining potential, in a neighbourhood of an n-dimensional curved manifold M^n embedded in a p-dimensional Euclidean space R^p with p >= n+2. The effective Hamiltonian on M^n has a (generally non-Abelian) gauge structure determined by geometry of M^n. Such a gauge term is defined in terms of the vectors normal to M^n, and its connection is called the N-connection. In order to see the global effect of this type of connections, the case of M^1 embedded in R^3 is examined, where the relation of an integral of the gauge potential of the N-connection (i.e., the torsion) along a path in M^1 to the Berry's phase is given through Gauss mapping of the vector tangent to M^1. Through the same mapping in the case of M^1 embedded in R^p, where the normal and the tangent quantities are exchanged, the relation of the N-connection to the induced gauge potential on the (p-1)-dimensional sphere S^{p-1} (p >= 3) found by Ohnuki and Kitakado is concretely established. Further, this latter which has the monopole-like structure is also proved to be gauge-equivalent to the spin-connection of S^{p-1}. Finally, by extending formally the fundamental equations for M^n to infinite dimensional case, the present formalism is applied to the field theory that admits a soliton solution. The resultant expression is in some respects different from that of Gervais and Jevicki.Comment: 52 pages, PHYZZX. To be published in Int. J. Mod. Phys.

    Emission patterns of neutral pions in 40 A MeV Ta+Au reactions

    Get PDF
    Differential cross sections of neutral pions emitted in 181Ta + 197Au collisions at a beam energy of 39.5A MeV have been measured with the photon spectrometer TAPS. The kinetic energy and transverse momentum spectra of neutral pions cannot be properly described in the framework of the thermal model, nor when the reabsorption of pions is accounted for in a phenomenological model. However, high energy and high momentum tails of the pion spectra can be well fitted through thermal distributions with unexpectedly soft temperature parameters below 10 MeV.Comment: 16 pages (double-spaced), 5 figures; corrections after referee's comments and suggestion

    Thermal bremsstrahlung probing the thermodynamical state of multifragmenting systems

    Full text link
    Inclusive and exclusive hard-photon (EÎł>_\gamma > 30 MeV) production in five different heavy-ion reactions (36^{36}Ar+197^{197}Au, 107^{107}Ag, 58^{58}Ni, 12^{12}C at 60{\it A} MeV and 129^{129}Xe+120^{120}Sn at 50{\it A} MeV) has been studied coupling the TAPS photon spectrometer with several charged-particle multidetectors covering more than 80% of 4π\pi. The measured spectra, slope parameters and source velocities as well as their target-dependence, confirm the existence of thermal bremsstrahlung emission from secondary nucleon-nucleon collisions that accounts for roughly 20% of the total hard-photon yield. The thermal slopes are a direct measure of the temperature of the excited nuclear systems produced during the reaction.Comment: 4 pages, 3 figures, Proceedings CRIS 2000, 3rd Catania Relativistic Ion Studies, "Phase Transitions in Strong Interactions: Status and Perspectives", Acicastello, Italy, May 22-26, 2000 (to be published in Nuc. Phys. A

    Phase-fluctuation induced reduction of the kinetic energy at the superconducting transition

    Full text link
    Recent reflectivity measurements provide evidence for a "violation" of the in-plane optical integral in the underdoped high-T_c compound Bi_2Sr_2CaCu_2O_{8+\delta} up to frequencies much higher than expected by standard BCS theory. The sum rule violation may be related to a loss of in-plane kinetic energy at the superconducting transition. Here, we show that a model based on phase fluctuations of the superconducting order parameter can account for this change of in-plane kinetic energy at T_c. The change is due to a transition from a phase-incoherent Cooper-pair motion in the pseudogap regime above T_c to a phase-coherent motion at T_c.Comment: 5 pages, 3 eps-figure

    Pair Phase Fluctuations and the Pseudogap

    Full text link
    The single-particle density of states and the tunneling conductance are studied for a two-dimensional BCS-like Hamiltonian with a d_{x^2-y^2}-gap and phase fluctuations. The latter are treated by a classical Monte Carlo simulation of an XY model. Comparison of our results with recent scanning tunneling spectra of Bi-based high-T_c cuprates supports the idea that the pseudogap behavior observed in these experiments can be understood as arising from phase fluctuations of a d_{x^2-y^2} pairing gap whose amplitude forms on an energy scale set by T_c^{MF} well above the actual superconducting transition.Comment: 5 pages, 6 eps-figure

    Symmetric Skyrmions

    Get PDF
    We present candidates for the global minimum energy solitons of charge one to nine in the Skyrme model, generated using sophisticated numerical algorithms. Assuming the Skyrme model accurately represents the low energy limit of QCD, these configurations correspond to the classical nuclear ground states of the light elements. The solitons found are particularly symmetric, for example, the charge seven skyrmion has icosahedral symmetry, and the shapes are shown to fit a remarkable sequence defined by a geometric energy minimization (GEM) rule. We also calculate the energies and sizes to within at least a few percent accuracy. These calculations provide the basis for a future investigation of the low energy vibrational modes of skyrmions and hence the possibility of testing the Skyrme model against experiment.Comment: latex, 9 pages, 1 figure (fig1.gif

    Kaon Condensation in the Bound-State Approach to the Skyrme Model

    Full text link
    We explore kaon condensation using the bound-state approach to the Skyrme model on a 3-sphere. The condensation occurs when the energy required to produce a K−K^- falls below the electron fermi level. This happens at the baryon number density on the order of 3--4 times nuclear density.Comment: LaTeX format, 15 pages. 3 Postscript figures, compressed and uuencode
    • 

    corecore