257 research outputs found
The M Dwarf GJ 436 and its Neptune-Mass Planet
We determine stellar parameters for the M dwarf GJ 436 that hosts a
Neptune-mass planet. We employ primarily spectral modeling at low and high
resolution, examining the agreement between model and observed optical spectra
of five comparison stars of type, M0-M3. Modeling high resolution optical
spectra suffers from uncertainties in TiO transitions, affecting the predicted
strengths of both atomic and molecular lines in M dwarfs. The determination of
Teff, gravity, and metallicity from optical spectra remains at ~10%. As
molecules provide opacity both in lines and as an effective continuum,
determing molecular transition parameters remains a challenge facing models
such as the PHOENIX series, best verified with high resolution and
spectrophotometric spectra. Our analysis of GJ 436 yields an effective
temperature of Teff = 3350 +/- 300 K and a mass of 0.44 Msun. New Doppler
measurements for GJ 436 with a precision of 3 m/s taken during 6 years improve
the Keplerian model of the planet, giving a minimum mass, M sin i = 0.0713 Mjup
= 22.6 Mearth, period, P = 2.6439 d, and e = 0.16 +/- 0.02. The noncircular
orbit contrasts with the tidally circularized orbits of all close-in
exoplanets, implying either ongoing pumping of eccentricity by a more distant
companion, or a higher Q value for this low-mass planet. The velocities indeed
reveal a long term trend, indicating a possible distant companion.Comment: 27 pages, 7 figures, accepted to PAS
The CORALIE survey for southern extrasolar planets. XVI. Discovery of a planetary system around HD 147018 and of two long period and massive planets orbiting HD 171238 and HD 204313
We report the detection of a double planetary system around HD 140718 as well
as the discovery of two long period and massive planets orbiting HD 171238 and
HD 204313. Those discoveries were made with the CORALIE Echelle spectrograph
mounted on the 1.2-m Euler Swiss telescope located at La Silla Observatory,
Chile. The planetary system orbiting the nearby G9 dwarf HD 147018 is composed
of an eccentric inner planet (e=0.47) with twice the mass of Jupiter (2.1 MJup
) and with an orbital period of 44.24 days. The outer planet is even more
massive (6.6 MJup) with a slightly eccentric orbit (e=0.13) and a period of
1008 days. The planet orbiting HD 171238 has a minimum mass of 2.6 MJup, a
period of 1523 days and an eccentricity of 0.40. It orbits a G8 dwarfs at 2.5
AU. The last planet, HD 204313 b, is a 4.0 MJup -planet with a period of 5.3
years and has a low eccentricity (e = 0.13). It orbits a G5 dwarfs at 3.1 AU.
The three parent stars are metal rich, which further strengthened the case that
massive planets tend to form around metal rich stars.Comment: 6 pages, 6 figures, accepted for publication in A&
New Debris Disks Around Nearby Main Sequence Stars: Impact on The Direct Detection of Planets
Using the MIPS instrument on the Spitzer telescope, we have searched for
infrared excesses around a sample of 82 stars, mostly F, G, and K main-sequence
field stars, along with a small number of nearby M stars. These stars were
selected for their suitability for future observations by a variety of
planet-finding techniques. These observations provide information on the
asteroidal and cometary material orbiting these stars - data that can be
correlated with any planets that may eventually be found. We have found
significant excess 70um emission toward 12 stars. Combined with an earlier
study, we find an overall 70um excess detection rate of % for mature
cool stars. Unlike the trend for planets to be found preferentially toward
stars with high metallicity, the incidence of debris disks is uncorrelated with
metallicity. By newly identifying 4 of these stars as having weak 24um excesses
(fluxes 10% above the stellar photosphere), we confirm a trend found in
earlier studies wherein a weak 24um excess is associated with a strong 70um
excess. Interestingly, we find no evidence for debris disks around 23 stars
cooler than K1, a result that is bolstered by a lack of excess around any of
the 38 K1-M6 stars in 2 companion surveys. One motivation for this study is the
fact that strong zodiacal emission can make it hard or impossible to detect
planets directly with future observatories like the {\it Terrestrial Planet
Finder (TPF)}. The observations reported here exclude a few stars with very
high levels of emission, 1,000 times the emission of our zodiacal cloud,
from direct planet searches. For the remainder of the sample, we set relatively
high limits on dust emission from asteroid belt counterparts
Gravitational Microlensing Evidence for a Planet Orbiting a Binary Star System
The study of extra-solar planetary systems has emerged as a new discipline of
observational astronomy in the past few years with the discovery of a number of
extra-solar planets. The properties of most of these extra-solar planets were
not anticipated by theoretical work on the formation of planetary systems. Here
we report observations and light curve modeling of gravitational microlensing
event MACHO-97-BLG-41, which indicates that the lens system consists of a
planet orbiting a binary star system. According to this model, the mass ratio
of the binary star system is 3.8:1 and the stars are most likely to be a late K
dwarf and an M dwarf with a separation of about 1.8 AU. A planet of about 3
Jupiter masses orbits this system at a distance of about 7 AU. If our
interpretation of this light curve is correct, it represents the first
discovery of a planet orbiting a binary star system and the first detection of
a Jovian planet via the gravitational microlensing technique. It suggests that
giant planets may be common in short period binary star systems.Comment: 11 pages, with 1 color and 2 b/w Figures included (published version
The N2K Consortium. II. A Transiting Hot Saturn Around HD 149026 With a Large Dense Core
Doppler measurements from Subaru and Keck have revealed radial velocity
variations in the V=8.15, G0IV star HD 149026 consistent with a Saturn-Mass
planet in a 2.8766 day orbit. Photometric observations at Fairborn Observatory
have detected three complete transit events with depths of 0.003 mag at the
predicted times of conjunction. HD 149026 is now the second brightest star with
a transiting extrasolar planet. The mass of the star, based on interpolation of
stellar evolutionary models, is 1.3 +/- 0.1 solar masses; together with the
Doppler amplitude, K=43.3 m s^-1, we derive a planet mass Msin(i)=0.36 Mjup,
and orbital radius of 0.042 AU. HD 149026 is chromospherically inactive and
metal-rich with spectroscopically derived [Fe/H]=+0.36, Teff=6147 K, log g=4.26
and vsin(i)=6.0 km s^-1. Based on Teff and the stellar luminosity of 2.72 Lsun,
we derive a stellar radius of 1.45 Rsun. Modeling of the three photometric
transits provides an orbital inclination of 85.3 +/- 1.0 degrees and (including
the uncertainty in the stellar radius) a planet radius of 0.725 +/- 0.05 Rjup.
Models for this planet mass and radius suggest the presence of a ~67 Mearth
core composed of elements heavier than hydrogen and helium. This substantial
planet core would be difficult to construct by gravitational instability.Comment: 25 pages, 5 figures, accepted by the Astrophysical Journa
Exoplanet Characterization and the Search for Life
Over 300 extrasolar planets (exoplanets) have been detected orbiting nearby
stars. We now hope to conduct a census of all planets around nearby stars and
to characterize their atmospheres and surfaces with spectroscopy. Rocky planets
within their star's habitable zones have the highest priority, as these have
the potential to harbor life. Our science goal is to find and characterize all
nearby exoplanets; this requires that we measure the mass, orbit, and
spectroscopic signature of each one at visible and infrared wavelengths. The
techniques for doing this are at hand today. Within the decade we could answer
long-standing questions about the evolution and nature of other planetary
systems, and we could search for clues as to whether life exists elsewhere in
our galactic neighborhood.Comment: 7 pages, 2 figures, submitted to Astro2010 Decadal Revie
Planet formation and migration
We review the observations of extrasolar planets, ongoing developments in
theories of planet formation, orbital migration, and the evolution of
multiplanet systems.Comment: Revised version. Typos corrected in equations (36)-(48). Article
available free at www.iop.org/journals/thismonth until December
A Precise Physical Orbit For The M-Dwarf Binary Gliese 268
We report high-precision interferometric and radial velocity (RV) observations of the M-dwarf binary Gl 268. Combining measurements conducted using the IOTA interferometer and the ELODIE and Harvard Center for Astrophysics RV instruments leads to a mass of 0.22596 plus-minus 0.00084 Mass compared to the sun for component A and 0.19230 plus-minus 0.00071 Mass compared to the sun for component B. The system parallax as determined by these observations is 0.1560 plus-minus 0.0030 arcsec - a measurement with 1.9% uncertainty in excellent agreement with Hipparcos (0.1572 plus-minus 0.0033). The absolute H-band magnitudes of the component stars are not well constrained by these measurements; however, we can place an approximate upper limit of 7.95 and 8.1 for Gl 268A and B, respectively.We test these physical parameters against the predictions of theoretical models that combine stellar evolution with high fidelity, non-gray atmospheric models. Measured and predicted values are compatible within 2sigma. These results are among the most precise masses measured for visual binaries and compete with the best adaptive optics and eclipsing binary results
- …