148 research outputs found
Measurements of Deuteron Photodisintegration up to 4.0 GeV
The first measurements of the differential cross section for the d(gamma,p)n
reaction up to 4.0 GeV were performed at Continuous Electron Beam Accelerator
Facility (CEBAF) at Jefferson Lab. We report the cross sections at the proton
center-of-mass angles of 36, 52, 69 and 89 degrees. These results are in
reasonable agreement with previous measurements at lower energy. The 89 and 69
degree data show constituent-counting-rule behavior up to 4.0 GeV photon
energy. The 36 and 52 degree data disagree with the counting rule behavior. The
quantum chromodynamics (QCD) model of nuclear reactions involving reduced
amplitudes disagrees with the present data.Comment: 5 pages (REVTeX), 1 figure (postscript
Neuroimage
The thalamus is a central integration structure in the brain, receiving and distributing information among the cerebral cortex, subcortical structures, and the peripheral nervous system. Prior studies clearly show that the thalamus atrophies in cognitively unimpaired aging. However, the thalamus is comprised of multiple nuclei involved in a wide range of functions, and the age-related atrophy of individual thalamic nuclei remains unknown. Using a recently developed automated method of identifying thalamic nuclei (3T or 7T MRI with white-matter-nulled MPRAGE contrast and THOMAS segmentation) and a cross-sectional design, we evaluated the age-related atrophy rate for 10 thalamic nuclei (AV, CM, VA, VLA, VLP, VPL, pulvinar, LGN, MGN, MD) and an epithalamic nucleus (habenula). We also used T1-weighted images with the FreeSurfer SAMSEG segmentation method to identify and measure age-related atrophy for 11 extra-thalamic structures (cerebral cortex, cerebral white matter, cerebellar cortex, cerebellar white matter, amygdala, hippocampus, caudate, putamen, nucleus accumbens, pallidum, and lateral ventricle). In 198 cognitively unimpaired participants with ages spanning 20–88 years, we found that the whole thalamus atrophied at a rate of 0.45% per year, and that thalamic nuclei had widely varying age-related atrophy rates, ranging from 0.06% to 1.18% per year. A functional grouping analysis revealed that the thalamic nuclei involved in cognitive (AV, MD; 0.53% atrophy per year), visual (LGN, pulvinar; 0.62% atrophy per year), and auditory/vestibular (MGN; 0.64% atrophy per year) functions atrophied at significantly higher rates than those involved in motor (VA, VLA, VLP, and CM; 0.37% atrophy per year) and somatosensory (VPL; 0.32% atrophy per year) functions. A proximity-to-CSF analysis showed that the group of thalamic nuclei situated immediately adjacent to CSF atrophied at a significantly greater atrophy rate (0.59% atrophy per year) than that of the group of nuclei located farther from CSF (0.36% atrophy per year), supporting a growing hypothesis that CSF-mediated factors contribute to neurodegeneration. We did not find any significant hemispheric differences in these rates of change for thalamic nuclei. Only the CM thalamic nucleus showed a sex-specific difference in atrophy rates, atrophying at a greater rate in male versus female participants. Roughly half of the thalamic nuclei showed greater atrophy than all extra-thalamic structures examined (0% to 0.54% per year). These results show the value of white-matter-nulled MPRAGE imaging and THOMAS segmentation for measuring distinct thalamic nuclei and for characterizing the high and heterogeneous atrophy rates of the thalamus and its nuclei across the adult lifespan. Collectively, these methods and results advance our understanding of the role of thalamic substructures in neurocognitive and disease-related changes that occur with aging. © 2022Initiative d'excellence de l'Université de Bordeau
Measurement of Tensor Polarization in Elastic Electron-Deuteron Scattering at Large Momentum Transfer
Tensor polarization observables (t20, t21 and t22) have been measured in
elastic electron-deuteron scattering for six values of momentum transfer
between 0.66 and 1.7 (GeV/c)^2. The experiment was performed at the Jefferson
Laboratory in Hall C using the electron HMS Spectrometer, a specially designed
deuteron magnetic channel and the recoil deuteron polarimeter POLDER. The new
data determine to much larger Q^2 the deuteron charge form factors G_C and G_Q.
They are in good agreement with relativistic calculations and disagree with
pQCD predictions.Comment: 5 pages, 4 figures, for associated informations, see
http://isnwww.in2p3.fr/hadrons/t20/t20_ang.html clarification about several
topics, one figure has been had, extraction of form factors use AQ
interpolation in our Q2 range onl
A precise measurement of the deuteron elastic structure function A(Q^2)
The A(Q^2) structure function in elastic electron-deuteron scattering was
measured at six momentum transfers Q^2 between 0.66 and 1.80 (GeV/c)^2 in Hall
C at Jefferson Laboratory. The scattered electrons and recoil deuterons were
detected in coincidence, at a fixed deuteron angle of 60.5 degrees. These new
precise measurements resolve discrepancies between older sets of data. They put
significant constraints on existing models of the deuteron electromagnetic
structure, and on the strength of isoscalar meson exchange currents.Comment: 3 LaTeX pages plus 2 PS figure
Virtual Compton Scattering and Neutral Pion Electroproduction in the Resonance Region up to the Deep Inelastic Region at Backward Angles
We have made the first measurements of the virtual Compton scattering (VCS)
process via the H exclusive reaction in the nucleon resonance
region, at backward angles. Results are presented for the -dependence at
fixed GeV, and for the -dependence at fixed near 1.5 GeV.
The VCS data show resonant structures in the first and second resonance
regions. The observed -dependence is smooth. The measured ratio of
H to H cross sections emphasizes the different
sensitivity of these two reactions to the various nucleon resonances. Finally,
when compared to Real Compton Scattering (RCS) at high energy and large angles,
our VCS data at the highest (1.8-1.9 GeV) show a striking -
independence, which may suggest a transition to a perturbative scattering
mechanism at the quark level.Comment: 20 pages, 8 figures. To appear in Phys.Rev.
Large Momentum Transfer Measurements of the Deuteron Elastic Structure Function A(Q^2) at Jefferson Laboratory
The deuteron elastic structure function A(Q^2) has been extracted in the Q^2
range 0.7 to 6.0 (GeV/c)^2 from cross section measurements of elastic
electron-deuteron scattering in coincidence using the Hall A Facility of
Jefferson Laboratory. The data are compared to theoretical models based on the
impulse approximation with inclusion of meson-exchange currents, and to
predictions of quark dimensional scaling and perturbative quantum
chromodynamicsComment: Submitted to Physical Review Letter
Display of probability densities for data from a continuous distribution
Based on cumulative distribution functions, Fourier series expansion and
Kolmogorov tests, we present a simple method to display probability densities
for data drawn from a continuous distribution. It is often more efficient than
using histograms.Comment: 5 pages, 4 figures, presented at Computer Simulation Studies XXIV,
Athens, GA, 201
Pulsed laser deposition of Ga-La-S chalcogenide glass thin film optical waveguides
Thin film optical waveguides of the chalcogenide glass Ga-La-S have been deposited on substrates of CaF2 and microscope glass by the technique of pulsed laser deposition. The chalcogenide properties of photobleaching, photodoping, and photoinduced refractive index changes have been observed and preliminary experiments carried out. The refractive index and thickness of the layer were verified using a waveguide "dark mode" analysis technique
Virtual Compton Scattering and the Generalized Polarizabilities of the Proton at Q^2=0.92 and 1.76 GeV^2
Virtual Compton Scattering (VCS) on the proton has been studied at Jefferson
Lab using the exclusive photon electroproduction reaction (e p --> e p gamma).
This paper gives a detailed account of the analysis which has led to the
determination of the structure functions P_LL-P_TT/epsilon and P_LT, and the
electric and magnetic generalized polarizabilities (GPs) alpha_E(Q^2) and
beta_M(Q^2) at values of the four-momentum transfer squared Q^2= 0.92 and 1.76
GeV^2. These data, together with the results of VCS experiments at lower
momenta, help building a coherent picture of the electric and magnetic GPs of
the proton over the full measured Q^2-range, and point to their non-trivial
behavior.Comment: version 2: modified according to PRC Editor's and Referee's
recommendations. Archival paper for the E93-050 experiment at JLab Hall A. 28
pages, 23 figures, 5 cross-section tables. To be submitted to Phys.Rev.
Backward electroproduction of pi0 mesons on protons in the region of nucleon resonances at four momentum transfer squared Q**2 = 1.0 GeV**2
Exclusive electroproduction of pi0 mesons on protons in the backward
hemisphere has been studied at Q**2 = 1.0 GeV**2 by detecting protons in the
forward direction in coincidence with scattered electrons from the 4 GeV
electron beam in Jefferson Lab's Hall A. The data span the range of the total
(gamma* p) center-of-mass energy W from the pion production threshold to W =
2.0 GeV. The differential cross sections sigma_T+epsilon*sigma_L, sigma_TL, and
sigma_TT were separated from the azimuthal distribution and are presented
together with the MAID and SAID parametrizations.Comment: 17 pages, 11 figures, information can be found at
http://hallaweb.jlab.org/experiment/E93-050/vcs.html updated content about
SAID analysis updated MAID results following new reference nucl-th/0310041
updated figure
- …