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The thalamus is a central integration structure in the brain, receiving and distributing information 

among the cerebral cortex, subcortical structures, and the peripheral nervous system. Prior studies 

clearly show that the thalamus atrophies in cognitively unimpaired aging. However, the thalamus 

is comprised of multiple nuclei involved in a wide range of functions, and the age-related atrophy 

of individual thalamic nuclei remains unknown. Using a recently developed automated method 

of identifying thalamic nuclei (3T or 7T MRI with white-matter-nulled MPRAGE contrast and 

THOMAS segmentation) and a cross-sectional design, we evaluated the age-related atrophy rate 

for 10 thalamic nuclei (AV, CM, VA, VLA, VLP, VPL, pulvinar, LGN, MGN, MD) and an 

epithalamic nucleus (habenula). We also used T1-weighted images with the FreeSurfer SAMSEG 

segmentation method to identify and measure age-related atrophy for 11 extra-thalamic structures 

(cerebral cortex, cerebral white matter, cerebellar cortex, cerebellar white matter, amygdala, 

hippocampus, caudate, putamen, nucleus accumbens, pallidum, and lateral ventricle). In 198 

cognitively unimpaired participants with ages spanning 20–88 years, we found that the whole 

thalamus atrophied at a rate of 0.45% per year, and that thalamic nuclei had widely varying 

age-related atrophy rates, ranging from 0.06% to 1.18% per year. A functional grouping analysis 

revealed that the thalamic nuclei involved in cognitive (AV, MD; 0.53% atrophy per year), visual 

(LGN, pulvinar; 0.62% atrophy per year), and auditory/vestibular (MGN; 0.64% atrophy per year) 

functions atrophied at significantly higher rates than those involved in motor (VA, VLA, VLP, 

and CM; 0.37% atrophy per year) and somatosensory (VPL; 0.32% atrophy per year) functions. 

A proximity-to-CSF analysis showed that the group of thalamic nuclei situated immediately 

adjacent to CSF atrophied at a significantly greater atrophy rate (0.59% atrophy per year) than 

that of the group of nuclei located farther from CSF (0.36% atrophy per year), supporting a 

growing hypothesis that CSF-mediated factors contribute to neurodegeneration. We did not find 

any significant hemispheric differences in these rates of change for thalamic nuclei. Only the CM 

thalamic nucleus showed a sex-specific difference in atrophy rates, atrophying at a greater rate 

in male versus female participants. Roughly half of the thalamic nuclei showed greater atrophy 

than all extra-thalamic structures examined (0% to 0.54% per year). These results show the value 

of white-matter-nulled MPRAGE imaging and THOMAS segmentation for measuring distinct 

thalamic nuclei and for characterizing the high and heterogeneous atrophy rates of the thalamus 

and its nuclei across the adult lifespan. Collectively, these methods and results advance our 

understanding of the role of thalamic substructures in neurocognitive and disease-related changes 

that occur with aging.
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1. Introduction

Atrophy of brain tissue is a classic hallmark of aging. Brain atrophy reflects the shrinkage 

and loss of neurons and the connections between them (Fjell and Walhovd, 2010). While 

brain atrophy is a prominent feature in many brain diseases, atrophy can also be seen 

both broadly and focally in the cognitively unimpaired aging brain (Fjell and Walhovd, 

2010). Characterizing brain structural changes during cognitively unimpaired aging will 
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inform efforts to understand the differences between normal and disease-related atrophy, the 

structural changes that can be tolerated before they significantly impact function, and the 

resiliency of the cognitively unimpaired aging brain.

Within the brain, the thalamus is a central integration structure, receiving and distributing 

information among the cerebral cortex, subcortical structures, and the peripheral nervous 

system via the brainstem (Steriade et al., 1997). This high degree of integration is 

accomplished in part by thalamic projection neurons that send long-range outputs with 

collateral projections and large ramifications at their targets (Steriade et al., 1997). This 

processing is organized by intra-thalamic nuclei dedicated to distinct functions, including 

cognitive, visual, auditory, vestibular, and sensorimotor functions (Steriade et al., 1997). 

Lesions of thalamic nuclei lead to profound disruptions in the modulation of behaviors 

subserved by these functional domains (Carrera and Bogousslavsky, 2006). As a highly 

connected and integrative structure in the brain, the thalamus is in a critical but also 

vulnerable position that may show prominent structural changes resulting from age-related 

changes across the brain, such as degeneration due to reduced connectivity or accumulated 

oxidative stress from high levels of neuronal activity.

Current knowledge of age-related thalamic volumetric changes in humans comes primarily 

from neuroimaging studies which show that the thalamus as a whole significantly atrophies 

over the cognitively unimpaired adult lifespan (Cherubini et al., 2009; Fjell et al., 2013; 

Goodro et al., 2012; Hughes et al., 2012; Long et al., 2012; Murphy et al., 1996, 1993; 

Narvacan et al., 2017; Nyberg et al., 2010; Raji et al., 2009; Schippling et al., 2017; 

Squarzoni et al., 2018; Su et al., 2012; Takahashi et al., 2011; Tullo et al., 2019; Van 

Der Werf et al., 2001; Walhovd et al., 2005, 2011; Yoo et al., 2016; Zheng et al., 2019). 

Postmortem histological studies afford a higher resolution characterization of the volumes 

of thalamic nuclei. However, while there are a number of postmortem human histological 

studies showing that thalamic nuclear volumes and neuronal counts are reduced in disease 

(Byne et al., 2002; Popken et al., 2000; Young et al., 2000), to our knowledge, there are 

no such studies of cognitively unimpaired human aging. Thus, as yet, we do not know 

the rates of volumetric change of specific thalamic nuclei over the cognitively unimpaired 

adult lifespan (Fama and Sullivan, 2015). Such studies would identify whether age-related 

neurodegeneration is occurring heterogeneously within the thalamus, and therefore whether 

the concept of “regional vulnerability” (Small, 2014) applies to the thalamus.

Recently, our group developed an automated image segmentation method that non-invasively 

and accurately identifies 10 thalamic nuclei and two adjacent structures. This method 

uses 3T or 7T MRI with white-matter-nulled magnetization prepared rapid acquisition 

gradient echo (WMnMPRAGE) contrast, which provides higher contrast in the thalamus 

than conventional MPRAGE imaging in which the cerebrospinal fluid (CSF) is nulled 

(Saranathan et al., 2015; Tourdias et al., 2014). WMnMPRAGE image contrast is strong 

enough to manually identify individual thalamic nuclei and adjacent structures (Tourdias et 

al., 2014). Our automated thalamic segmentation method, known as THOMAS (THalamus 

Optimized Multi-Atlas Segmentation), was trained using manual delineations of these 

identifiable structures in a set of 20 training volumes to create a multi-atlas label-fusion 

segmentation tool that accurately identifies 10 thalamic nuclei and two adjacent structures 
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(Su et al., 2019). THOMAS has been used to characterize the volumes of thalamic nuclei 

in cognitively unimpaired versus patient populations of multiple sclerosis (Planche et al., 

2020), alcoholism and HIV (Zahr et al., 2020), and essential tremor (Su et al., 2020).

In the present study, our principal goal was to characterize the structural changes of 

thalamic nuclei over the adult lifespan in cognitively unimpaired participants using a 

cross-sectional approach. This was done by applying THOMAS to segment thalamic nuclei 

within WMnMPRAGE image volumes acquired from a large group of 198 cognitively 

unimpaired adult participants with ages ranging from 20 to 88 years. Our secondary goal 

was to compare the atrophy of thalamic nuclei with those of extra-thalamic regions, with the 

latter segmented using conventional T1-weighted images of the same participants and the 

Sequence Adaptive Multimodal SEGmentation (SAMSEG) tool within the FreeSurfer suite 

of neuroimaging analysis tools. We employed an exponential regression model to estimate 

atrophy rates (annualized percent change in volume) and differences in atrophy rates among 

thalamic nuclei and extra-thalamic structures.

2. Material and methods

2.1. Participants

198 Cognitively unimpaired adult participants (86 M, 112 F) were recruited, with a mean 

age of 59.4 years and an age range of 20 to 88 years at the time of imaging (Table 1). 

Older participants (>=60 years of age, n = 143, 66 M, 77 F) were recruited at Stanford 

University as part of the Stanford Aging and Memory Study (SAMS) (Trelle et al., 2020, 

2021). Younger participants (<60 years of age) were recruited at Stanford University (n = 

17, 9 M, 8 F) and at the University of Bordeaux (n = 38, 11 M, 27 F). Written informed 

consent was obtained for all participants and study procedures were approved by each 

institution’s Institutional Review Board. Participants were screened against neurological 

and psychiatric disease. Older participants were additionally screened to have a Clinical 

Dementia Rating (CDR) (Morris, 1993) score of zero and age-appropriate normal cognitive 

functioning. The latter was based on a neuropsychological assessment battery that examined 

multiple domains, including episodic memory, attention, executive function, visuospatial 

processing, and language. Participants were classified as cognitively unimpaired by a team 

of neurologists and neuropsychologists, based on test scores falling within 1.5 standard 

deviations of demographically adjusted means; for details, see Trelle et al. (2020).

2.2. Image acquisition

MRI parameters for image acquisition are summarized in Table 2. Stanford participants were 

scanned with a 3D T1-weighted inversion-prepared fast spoiled gradient echo protocol at 3T 

and a WMnMPRAGE protocol at 7T, using 32-channel head coils in both cases. Bordeaux 

participants were imaged with 3D T1-weighted inversion-prepared fast spoiled gradient echo 

and WMnMPRAGE sequence protocols, both acquired at 3T using a 32-channel head coil.

T1-weighted images were acquired from Stanford older participants using the following 

scan parameters: 3T GE MR750 scanner, 3D BRAVO base sequence, sagittal acquisition, 

echo time (TE) 2.8 ms, repetition time (TR) 7.3 ms, inversion time (TI) 450 ms, flip angle 
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(FA) 12°, receive bandwidth (RBW) +/−41.67 kHz, spatial resolution 0.9 mm isotropic, 186 

slices per volume, ARC parallel imaging acceleration: 1.75, scan time 4.8 min.

T1-weighted images were acquired from Stanford younger participants using the following 

scan parameters: 3T GE MR750 scanner, 3D MPRAGE base sequence, coronal acquisition, 

TE 3.9 ms, TR 8.5 ms, TI 1200 ms, sequence time (time between inversion pulses: TS) 3700 

ms, FA 6°, RBW +/−19.2 kHz, spatial resolution 0.8 mm isotropic, 250 slices per volume, 

ARC parallel imaging acceleration: 3, scan time 4 min.

T1-weighted images were acquired from the Bordeaux cohort using one of two scan 

protocols: 1) for 22 participants of this cohort: 3T GE MR750w scanner, 3D BRAVO base 

sequence, sagittal acquisition, TE 3.2 ms, TR 8.5 ms, TI 400 ms, FA 11°, RBW +/−31.25 

kHz, spatial resolution 1 mm isotropic, 180 slices per volume, scan time 10 min; or 2) for 16 

participants of this cohort: 3T Canon Galan scanner, 3D MPRAGE base sequence, sagittal 

acquisition, TE 3.0 ms, TR 7.0 ms, TI 950 ms, FA 9°, RBW +/− 51.3 kHz, spatial resolution 

0.6 mm isotropic, 234 slices per volume, SPEEDER parallel imaging acceleration: 1.5; scan 

time 4.5 min.

WMnMPRAGE images were acquired from all Stanford participants using the following 

parameters: 7T GE MR950 scanner, 3D MPRAGE base sequence, coronal acquisition, TE 

4.6 ms, TR 10.1 ms, TI 680 ms, TS 5500 ms, views per segment 240, FA: 4°, RBW +/−11.9 

kHz, spatial resolution 1 mm isotropic, 220 slices per volume, k-space ordering; 2D radial 

fanbeam, scan time 11.1 min.

WMnMPRAGE images were acquired from the Bordeaux cohort using one of two scan 

protocols: (1) for 22 participants of this cohort: 3T GE MR750w scanner, MPRAGE base 

sequence, coronal acquisition, TE 4.7 ms, TR 11.1 ms, TI 500 ms, TS 4500 ms, views per 

segment 240, FA: 7°, RBW +/− 11.9 kHz, spatial resolution 1 mm isotropic, 220 slices per 

volume k-space ordering; 2D radial fanbeam, ARC parallel imaging acceleration: 1.25×1.25, 

scan time 7.2 min; or (2) for 16 participants of this cohort: 3T Canon Galan scanner, 3D 

MPRAGE base sequence, axial acquisition, TE 3.6 ms, TR 7.8 ms, TI 470 ms, TS 4500 

ms, FA 7°, RBW +/− 53.4 kHz, spatial resolution 0.8 mm isotropic, 200 slices per volume, 

SPEEDER parallel imaging acceleration: 1.3 × 1.6; scan time 11.3 min. See Saranathan et 

al. (2015) for further details.

T1-weighted and WMnMPRAGE image volumes were visually inspected to ensure that 

scans were of sufficient quality for analysis and were not corrupted by motion artifact.

2.3. Segmentations

Whole-brain WMnMPRAGE volumes were processed with the THOMAS thalamic 

segmentation tool with no preprocessing. The THOMAS algorithm applied to 

WMnMPRAGE images has been validated against manual segmentation (Su et al., 2019). 

Using version v0 of this tool (https://github.com/sujason/thomas), we segmented and 

extracted the volumes of 12 lateralized structures in each hemisphere of the brain: whole 

thalamus, ten thalamic nuclei (anteroventral [AV], centromedian [CM], lateral geniculate 

nucleus [LGN], mediodorsal [MD], medial geniculate nucleus [MGN], pulvinar [Pul], 
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ventral anterior [VA], ventral lateral anterior [VLA], ventral lateral posterior [VLP], 

and ventral posterolateral [VPL]), and one adjacent epithalamic structure, the habenula 

(Hb) (Fig. 1A). Note that THOMAS segments the whole thalamus separately from the 

thalamic nuclei; this whole thalamus encompasses all these preceding structures, as well 

as the mammillothalamic tract and some additional unlabeled thalamic areas (i.e., between 

segmented thalamic nuclei). See Tourdias et al. (2014), Saranathan et al. (2015), and Su et 

al. (2019) for additional details.

Whole-brain T1-weighted gradient echo volumes were processed with the FreeSurfer 

7.1.1 pipeline with no preprocessing. Using the FreeSurfer tool SAMSEG (https://

surfer.nmr.mgh.harvard.edu/fswiki/Samseg), we segmented and extracted the volumes of 

11 structures on each side of the brain: nucleus accumbens, amygdala, caudate, cerebellar 

cortex, cerebellar white matter, cerebral cortex, cerebral white matter, hippocampus, 

lateral ventricle, pallidum, and putamen (Fig. 1B). SAMSEG produces volumes via both 

probabilistic and discrete voxel segmentation summations; we used the volumes calculated 

via the probabilistic method. The SAMSEG algorithm has been validated using T1-weighted 

images from different scanners and acquired with different scan parameters, using expert 

manual segmentation of these images as ground truth. SAMSEG was shown to have the 

highest average Dice score of the five segmentation methods studied (SAMSEG, FreeSurfer, 

PICSL MALF, BrainFuse, and majority voting) (Puonti et al., 2016). Note that SAMSEG 

produces a whole thalamus segmentation, but we used the THOMAS segmentation of 

the whole thalamus because it includes the LGN and MGN, two major thalamic nuclei, 

whereas the SAMSEG whole thalamus does not. In addition, the thalamic contrast is higher 

in WMnMPRAGE images than in conventional T1-weighted images; thus we expect the 

THOMAS segmentation of thalamic boundaries to be more accurate.

Intracranial volume (ICV) estimates were obtained from 3T whole-brain T1-weighted 

gradient echo volumes using SPM12’s Segment and Tissue Volume Utility modules (https://

www.fil.ion.ucl.ac.uk/spm/software/spm12) (Malone et al., 2015) (Fig. 1C). The accuracy of 

all segmentations was checked visually for each subject.

2.4. Statistical analyses

For each structure in the left and right hemispheres, we employed an exponential regression 

model to quantify the association between brain structural volume and age, adjusting for 

education, cohort, sex, and ICV, yielding the rate of age-related atrophy. In particular, we 

estimated the volume of each structure as a function of age, years of education, cohort, sex, 

and ICV using the following model:

E(Y ∣ age, education, coℎort, sex, ICV ) = exp β0 + β1age + β2education
+β3coℎort + β4sex + γ1logICV = exp β0 + β1age + β2education
+β3coℎort + β4sex × ICVγ1,

which is equivalent to
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E Y
ICV γ1

∣ age, education, coℎort, sex

= exp β0 + β1age + β2education + β3coℎort + β4sex ,

where Y is the volume; education is in years; cohort = 0 for Stanford and 1 for Bordeaux, 

sex = 0 for female and 1 for male; and ICV is the total intracranial volume. Note: our 

principal analysis did not include education and cohort as covariates, but we did examine 

the influence of including these variables on our primary conclusions, described in more 

detail in Results and Discussion sections. An advantage of this exponential regression 

model is that the structure’s relative (percent) volumetric change per year (defined as 

atrophy rate) is constant over the lifespan and represented by exp(β1) − 1. A Wald test 

was performed to test against the null hypothesis that there is no association between 

volumetric change and age (i.e., H0 : β1 = 0). In the Wald test, the standard error of the 

estimated coefficient was assessed by nonparametric bootstrap. We compared the atrophy 

rates of two structures by estimating the difference in the β1 coefficients from the regression 

models of the two structures. The standard error of the estimated difference was assessed 

by nonparametric bootstrap, accounting for correlations between the volumes of structures 

from the same individual. Significant differences between the atrophy rates of structures 

were assessed with paired t-tests, adjusted for multiple comparisons. Hemisphere- and sex-

specific differences in atrophy rates were similarly assessed by comparing the corresponding 

regression coefficients of age.

For the analysis assessing the functional specificity of thalamic nuclei atrophy, we grouped 

thalamic nuclei into six broad functional groups, based on their known anatomical 

connectivity (Steriade et al., 1997); that is, based on the known functions of the brain 

regions connected to each nucleus. These broad functional groups are cognitive (left+right 

AV and MD), visual (left+right LGN and pulvinar), auditory and vestibular (left+right 

MGN), motor (left+right VA, VLA, VLP, and CM), and somatosensory (left+right VPL). 

For the proximity-to-CSF analysis, we grouped thalamic nuclei into two groups based on 

their proximity to the nearest ventricular surface: an “adjacent” group (left+right AV, MD, 

MGN, LGN, and pulvinar) and a “remote” group (left+right CM, VA, VLA, VLP, and VPL). 

For each of these group analyses, we summed the volumes of all nuclei within a group 

and across both hemispheres, to create a single “composite” volume, and fit this composite 

volume with our regression model to obtain its atrophy rate. We then performed the Wald 

test against the null hypothesis that the atrophy rate was zero, and pairwise comparisons 

between groups to test for differences in their atrophy rates.

To adjust for multiple comparisons, the simultaneous confidence region for parameters of 

interest (e.g., regression coefficient of age corresponding to a group of structural volumes 

of interest) was constructed, where the covariance between relevant estimates was estimated 

by nonparametric bootstrap, and the corresponding p-values controlling the family-wise 

error rate via the supremum Wald test statistic were reported. The statistical analyses were 

conducted using R 4.1.1 (The R Foundation for Statistical Computing).
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2.5. Data/code availability statement

Data and code are available upon request.

3. Results

3.1. Different thalamic nuclei show widely different age-related atrophy rates across the 
cognitively unimpaired adult lifespan

We found significant age-related atrophy of most of the thalamic nuclei (Fig. 2). Absolute 

thalamic nuclear volumes varied approximately linearly with age and with different atrophy 

rates for different nuclei. The following lists the THOMAS structures in descending order 

of annualized atrophy rate (Table 3). Left hemisphere: AV (1.18%), LGN (0.72%), MGN 

(0.67%), pulvinar (0.65%), CM (0.62%) VA (0.51%), MD (0.43%), VPL (0.36%), and 

VLP (0.30%). Right hemisphere: AV (1.08%), LGN (0.77%), CM (0.62%), MGN (0.61%), 

pulvinar (0.58%), VA (0.50%), MD (0.40%), VLP (0.34%), and VPL (0.28%). Atrophy 

rates of left and right VLA and habenula were not significantly different from zero. AV 

was notable in having a significantly greater atrophy rate than all other ipsilateral thalamic 

nuclei, except for the LGN in the right hemisphere (Supp. Fig. 1). These atrophy rates were 

not significantly changed after adjusting for years of education or cohort (Supp. Fig. 2). We 

also qualitatively observed that the older cohort had higher atrophy rates compared to those 

of the younger cohort (Fig. 2). We therefore assessed whether the atrophy rates for younger 

(Bordeaux and Stanford) or older cohorts differed from those of the whole group. We found 

that the younger cohorts together showed low, mostly non-significant atrophy rates, while 

the older cohort showed mostly significant atrophy rates that were similar to those of the 

whole group (Supp. Fig. 4 and Supp. Table 1).

3.2. The atrophy of thalamic nuclei segregates by function

We next examined whether the atrophy rates of thalamic nuclei were specific to function. 

This was hypothesized based on literature demonstrating that age-related atrophy occurs 

heterogeneously across functionally distinct cortical areas, with the greatest atrophy seen 

in frontal and temporal cortices and the least atrophy seen in sensorimotor and occipital 

cortices (Fjell and Walhovd, 2010; Fjell et al., 2009a; Raz et al., 1997). Thalamic 

nuclei were grouped into broad functional groups: cognitive (AV and MD), visual (LGN 

and pulvinar), auditory and vestibular (MGN), motor (VA, VLA, VLP, and CM), and 

somatosensory (VPL). We found a significant segregation of atrophy rates by function. 

The cognitive, visual, and auditory/vestibular groups showed the strongest atrophy rates, 

which ranged from 0.53% to 0.64% (Table 4). These were significantly different (adjusted 

p<0.006; Table 5) from the atrophy rates of the motor and somatosensory groups, which 

were 0.37% and 0.32%, respectively.

3.3. Thalamic nuclei that are adjacent to the ventricles show greater age-related atrophy

Prior work has found evidence in multiple sclerosis that thalamic nuclei adjacent to the 

ventricles show greater atrophy than nuclei that are located farther away from the ventricles 

(Lassmann, 2018; Planche et al., 2020). Here, we examined whether there was evidence 

that a similar effect occurs in cognitively unimpaired aging. To test this, thalamic nuclei 
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were grouped into two groups – those that were adjacent to the ventricles (AV, MD, LGN, 

pulvinar, and MGN) and those that were non-adjacent (i.e., remote) to the ventricles (CM, 

VA, VLA, VLP, and VPL). We found a significant difference of atrophy rates based on 

ventricular proximity: the adjacent group showed a higher atrophy rate (0.59% per year), 

which was significantly different (adjusted p<0.001) from that of the remote group (0.36% 

per year).

3.4. The thalamus and its nuclei have a high rate of atrophy in comparison to other brain 
structures across the cognitively unimpaired adult lifespan

For the extra-thalamic structures, we found that the absolute volumes of certain gray matter 

structures decreased approximately linearly with age, those of white matter structures did 

not significantly change with age, and those of the lateral ventricles increased nonlinearly 

with age (Fig. 3). Fig. 4 shows the percent change in volume per year for each structure; 

Table 3 shows these atrophy rates and their confidence bounds and p-values, adjusted for 

multiple comparisons. These atrophy rates were not significantly changed after adjusting for 

years of education or cohort (Supp. Fig. 2).

Significant differences between atrophy rates were assessed with paired t-tests, adjusted for 

multiple comparisons (Supp. Fig. 3). Notably, the left and right whole thalamic atrophy rates 

were higher than those of all extra-thalamic structures with the exception of the nucleus 

accumbens. Specifically, the atrophy rate of the left thalamus (0.45%) was significantly 

greater than that of all other significantly atrophying structures in the left hemisphere (Table 

3), those being cerebellar cortex (0.24%), putamen (0.19%), and cerebral cortex (0.15%). 

The exception to this was the left nucleus accumbens (0.44%), which had an atrophy rate 

similar to (but not significantly different from) that of the left thalamus. The following 

left hemispheric structures had no statistically significant atrophy with age: cerebral white 

matter, cerebellar white matter, amygdala, hippocampus, caudate, and pallidum. We note 

that we do observe significant atrophy of these structures in the older cohort alone (Supp. 

Table 1). Similarly, the atrophy rate of the right thalamus (0.45%) was significantly greater 

than all other significantly atrophying right hemispheric structures, those being putamen 

(0.29%), cerebellar cortex (0.25%), caudate (0.21%), and cerebral cortex (0.15%). The 

exception to this was the right nucleus accumbens, whose atrophy rate (0.54%) was similar 

to that of the right thalamus. The following right hemispheric structures had no statistically 

significant atrophy with age: cerebral white matter, cerebellar white matter, amygdala, 

hippocampus, and pallidum; again, we note that the atrophy rates of these structures are 

significantly greater than zero when analyzing the older cohort alone (Supp. Table 1). 

Roughly half of the thalamic nuclei had higher rates of atrophy than all of the extra-thalamic 

structures examined in both the left and right hemispheres (Fig. 4).

We also found that the left and right lateral ventricles significantly increased in volume with 

age (left: 1.74% volume increase per year; right: 1.61%). The volumetric expansion of the 

lateral ventricle was nonlinear with age, increasing strongly for ages greater than 60 years.
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3.5. Virtually no hemispheric or sex differences in the age-dependent changes of 
thalamic and extra-thalamic structures

Based on pairwise t-tests between the left and right volumes for each nucleus, adjusted for 

multiple comparisons, we did not observe any significant hemisphere-specific differences in 

atrophy rates for any thalamic or extra-thalamic structures.

Sex was entered as an independent variable in the exponential regression models described 

above for both intra- and extra-thalamic structures. Only one structure showed a sex-specific 

difference in atrophy rate. For the left CM nucleus of the thalamus, male participants showed 

a significantly greater atrophy rate than female participants (male, 0.86%; female, 0.41%; p 
= 0.034, adjusted for multiple comparisons).

4. Discussion

Prior literature examining the volumetric changes of brain structures during aging has 

consistently reported that the thalamus, along with other brain structures, significantly 

atrophies with age (Cherubini et al., 2009; Coupé et al., 2017; Narvacan et al., 2017; 

Raji et al., 2009; Walhovd et al., 2005, 2011; Zheng et al., 2019). Our principal finding 

is that thalamic nuclei have high and heterogeneous atrophy rates during cognitively 

unimpaired aging. Our results further suggest that a number of thalamic nuclei atrophy 

at greater rates than most of the extra-thalamic structures examined here. The high atrophy 

rates of thalamic nuclei may be the result of several underlying causes. One involves the 

“metabolism hypothesis”, proposed in the context of cortical hubs, which are brain regions 

with high degrees of connectivity and integration of information. Neuroimaging work has 

shown that these cortical hubs overlap with disease loci in Alzheimer’s disease – sites 

of amyloid beta deposition and hypometabolism (Buckner et al., 2009; Drzezga et al., 

2011). The metabolism hypothesis proposes that cortical hubs are susceptible to disease 

due to their high levels of neuronal activity, which demand high levels of metabolism and 

create an excess of harmful free radical byproducts as well as pathological changes in gene 

and protein expression (Buckner et al., 2008, 2005). Similarly, the highly connected and 

integrative role of thalamic nuclei may make them susceptible to metabolic and molecular 

changes that disrupt normal neuronal processes and ultimately lead to structural changes.

Another hypothesis is that nuclei adjacent to ventricles may be more susceptible or 

accessible to CSF-mediated factors or immune cells that cause tissue damage and 

subsequent structural atrophy. Such CSF-mediated damage has been reported in multiple 

sclerosis (De Meo et al., 2022; Lassmann, 2018; Planche et al., 2020; Blyau et al., 2022) 

and recently in traumatic brain injury (Sandry and Dobryakova, 2021). We speculate that the 

same may occur in healthy aging. Indeed, our analysis shows that thalamic nuclei that are 

adjacent to ventricular surfaces (AV, MD, MGN, LGN, and pulvinar) atrophy at significantly 

higher rates than those that are more remote from CSF (CM, VA, VLA, VLP, and VPL), 

supporting the CSF-mediated damage hypothesis and providing the first evidence of this 

proximity-to-CSF hypothesis in healthy aging.

We note an alternative hypothesis to the proximity-to-CSF hypothesis that could also explain 

our observations. Our analysis of the functional specificity of thalamic atrophy rates showed 
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that cognitive, visual, and auditory/vestibular nuclei exhibited higher atrophy rates than 

the sensorimotor nuclei. However, these functional groupings are also consistent with the 

proximity-to-CSF groupings, with the cognitive, visual, and auditory/vestibular nuclei in 

the adjacent group and the sensorimotor nuclei in the remote group. With the present data 

and analyses, we are unable to lend support for one hypothesis over the other; indeed, the 

biology underlying volumetric atrophy of thalamic nuclei is undoubtedly complex and may 

allow for both hypotheses.

Despite the observed significant decline in thalamic volumes with age, all participants in 

our study had normal cognitive function. What might explain this finding? One possibility 

is that the brain can compensate for structural/volumetric changes via alternative circuitry, 

at least up to a point, such that cognition is largely preserved (Park and Reuter-Lorenz, 

2009). Postmortem histological and patient neuroimaging studies indicate that thalamic 

volumes, as well as those of other brain structures, are smaller for patients with a variety 

of neurological conditions than for cognitively unimpaired age-matched control participants 

(Azevedo et al., 2018; Bishop et al., 2017; Callen et al., 2001; Cash et al., 2018; Fischl 

et al., 2002; Jernigan et al., 1991; Lee et al., 2020; Li et al., 2013; Schönecker et al., 

2018). Thus, while there is significant observable atrophy in the cognitively unimpaired aged 

brain, an even greater amount of atrophy occurs in the diseased brain and may be necessary 

before observable clinical signs occur (Fjell and Walhovd, 2010). Alternatively, the atrophy 

observed in the cognitively unimpaired aged versus diseased brains may reflect different 

underlying biological processes. For example, neurodegenerative disease-related atrophy 

typically involves neurotoxic proteins and neuronal death. However, studies of cognitively 

unimpaired aging suggest that age-related atrophy generally does not involve neuronal death, 

but rather a shrinkage in neuronal size and reductions of the neuropil (see Fjell and Walhovd 

2010 for review).

With the recent development of advanced thalamic segmentation methods (Iglesias et al., 

2018; Su et al., 2019), studies have begun to show that specific thalamic nuclei are altered 

in disease (Aleman-Gomez et al., 2020; Bocchetta et al., 2020; Chipika et al., 2020; Huang 

et al., 2020; Jonak et al., 2020; Lee et al., 2020; Low et al., 2019; Planche et al., 2020; 

Shin et al., 2019). Several studies have also found evidence of volumetric differences in 

thalamic nuclei between asymptomatic genetic carriers and non-carriers in frontotemporal 

dementia (Bocchetta et al., 2021) and their association with PET-based levels of amyloid 

and tau in Alzheimer’s disease (Pardilla-Delgado et al., 2021), highlighting the possibility 

that the volumes of thalamic nuclei may represent preclinical markers for disease. In our 

study, AV was the brain structure with the highest atrophy rate. We note that while the 

THOMAS method segments AV, this segmentation likely also includes some or all of the 

small, adjacent anterodorsal (AD) nucleus. The strong age-related atrophy of the AV nucleus 

observed in our study is consistent with prior work showing that anterior thalamic structures 

are implicated in Alzheimer’s disease (Aggleton et al., 2016; Braak and Braak, 1991a). 

Postmortem histology shows that the AD nucleus is abnormal relatively early in Alzheimer’s 

disease, with dense neurofibrillary tangles observed in stages II-III of the disease (Braak et 

al., 1996). AV is spared early in the disease, but sustains amyloid deposition in later stages 

of the disease (Braak and Braak, 1991a, b). Thus, our observation of AV’s strong atrophy 

in this cognitively unimpaired sample may be an early indicator of processes contributing 
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to the development of Alzheimer’s disease. Future studies are needed to longitudinally 

correlate the atrophy of AV and other thalamic nuclei with functional and disease markers, 

such as neuropsychological test scores, fMRI or PET activity, or cerebrospinal fluid levels of 

disease-related proteins, such as amyloid beta and tau.

We observed no hemisphere-specific differences and almost no sex-specific differences in 

age-related thalamic atrophy. There has been disagreement in the literature concerning the 

existence of hemisphere-specific (Hughes et al., 2012; Pieperhoff et al., 2008; Serbruyns et 

al., 2015; Squarzoni et al., 2018; Walhovd et al., 2011; Xu et al., 2000) or sex-specific 

(Coupé et al., 2017; Fjell et al., 2009b; Goodro et al., 2012; Király et al., 2016; Li 

et al., 2014; Murphy et al., 1996; Sullivan et al., 2004; Wang et al., 2019; Xu et 

al., 2000) differences in whole thalamic atrophy rates. Discrepancies may arise due to 

methodological differences between the studies, such as the sample size, ethnic background 

of the participants, and differing accuracies of the segmentation methods. In the present 

study, using a comparatively large sample size and the most accurate existing method 

for automatically segmenting thalamic nuclei, our data show virtually no hemisphere- 

or sex-specific differences in age-dependent atrophy rates for either the whole thalamus 

or individual thalamic nuclei. Future studies with larger sample sizes and state-of-the-

art thalamic segmentation methods are needed to systematically tease apart thalamic 

atrophy in the context of different demographic factors, genetic backgrounds, and cognitive 

capabilities.

Although the focus of our study was on thalamic nuclei, we note several differences in the 

atrophy of some extra-thalamic structures compared to prior literature. We observed low or 

no significant atrophy of cerebral and cerebellar white matter and the hippocampus over 

the adult lifespan. Coupé et al. (2017) examined volumetric changes in a survey of brain 

structures (including the whole thalamus, but not thalamic nuclei) during development and 

over the adult lifespan and found robust cerebral and cerebellar white matter atrophy and 

moderate hippocampal atrophy over the older age range (>60 years), while for these brain 

regions the average atrophy rate over the middle age range (20–60) was near zero. Our data 

showed similar trends, with near-zero atrophy rates when the entire age range was analyzed, 

but increased atrophy rates (cerebral and cerebellar white matter: 0.14% to 0.31% per year; 

hippocampus: 0.48% to 0.57% per year; Supp. Fig. 4B; Supp. Table 1) when only the older 

age range was analyzed. Similar (though not as extreme) observations of increased atrophy 

rates in the older cohort compared to the full cohort were seen for other brain structures 

(Supp. Fig. 4B). Notwithstanding these nonlinear effects, the thalamus and its nuclei remain 

among the highest atrophying structures with age, even in the older cohort. Future studies 

will need to examine this issue using a larger number of participants analyzed with both the 

SAMSEG and volBrain pipelines.

4.1. Caveats and limitations

In the present study, we combined an older cohort with two younger cohorts to create 

a large sample spanning seven decades of adult age. As a result, there were several group-

specific differences in scan acquisition parameters, such as scan protocol, field strength, 

and institution. For example, the WMnMPRAGE imaging for the Stanford younger and 
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older adults was acquired at 7T, while for the Bordeaux younger adults the WMnMPRAGE 

imaging was obtained at 3T. We first note that our analysis of brain volumes made exclusive 

use of fractional (or relative) volumes; this means that we analyzed only brain volumes 

normalized by ICV. We also adjusted for ICV in all regression analyses. Brain volumes and 

ICVs were obtained using the same segmentation tools for all participants. Therefore, if 

there is a multiplicative scaling bias as a result of a site-specific field strength, scanner, or 

software effect, then this scaling bias would be canceled in the formation of the fractional 

volumes. To further rule out a significant influence of field strength or institution, we tested 

for thalamic volume differences between Stanford (7T) and Bordeaux (3T) participants 

within the same age group and found no significant differences. We also found a similar 

pattern of atrophy after adjusting for cohort (Supp. Fig. 2B) or after analyzing solely the 

Stanford cohort (single site, same field strength) (Supp. Fig. 2C).

In addition, while the education level of our study population was uniformly high (mean 

17.8 years, standard deviation 2.6 years), the older cohort had a somewhat lower group 

education level (mean 16.7 years) compared to the younger cohorts (mean 20.8 years). It is 

known that education level correlates with brain health and performance of certain cognitive 

abilities (Capitani et al., 2009; Mortiner, 1988). Indeed, Trelle et al. (2020) reported poorer 

episodic memory retrieval with lower education level in the present older cohort. Thus, 

we may have observed lower age-related atrophy rates if our average education levels had 

been more similar between the younger and older age cohorts. However, we found a similar 

pattern of atrophy across brain structures when we adjusted for years of education in our 

regression analysis (Supp. Fig. 2A and B). Thus, the confound of varying education level did 

not significantly impact the observed atrophy rates across the adult lifespan. Nonetheless, 

future work should include longitudinal studies following the same participants as they age 

to obtain more sensitive and controlled data on the atrophy of the thalamus and its nuclei 

with aging.

As an alternative to THOMAS, Iglesias et al. (2018) have created a thalamic nuclear 

segmentation method that is available in the FreeSurfer package. While the FreeSurfer 

thalamic segmentation method has a number of advantages, such as operating on 

conventional T1 images and offering segmentations of 25 nuclei, we used WMnMPRAGE 

and THOMAS in the present study, motivated by prior work (Majdi et al., 2020; Su 

et al., 2019) showing that the combination of WMnMPRAGE imaging and THOMAS 

segmentation results in higher accuracy in defining the boundaries of thalamic nuclei (as 

measured by Dice and VSI overlap metrics) compared to that obtained with the FreeSurfer 

method.

In the present study, we used two different methods to segment structural volumes 

–THOMAS for thalamic nuclei using WMnMPRAGE images and SAMSEG for extra-

thalamic structures using conventional T1-weighted images. This approach was unavoidable, 

as no single method produces both sets of segmentations. Consequently, we note that 

there may be systematic software-specific effects that could affect comparisons between 

the atrophy rates of thalamic versus extra-thalamic structures. We note, however, that both 

THOMAS-derived and SAMSEG-derived whole thalamus volumes showed significant non-
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zero atrophy with age (0.45% per year for THOMAS, 0.23% per year for SAMSEG), 

indicating comparable volumetry for these two segmentation methods.

Another caveat is that we compared brain structures of very differently sized volumes: the 

smallest structures we analyzed (habenula with an average volume of 25 mm3) were almost 

10,000 times smaller in volume than the largest structures (cerebral cortex with an average 

volume of nearly 250,000 mm3). This huge dynamic range is the reason that we used an 

exponential model whose fundamental characteristic is a constant percent change in volume 

per unit time over the lifespan, allowing us to directly compare the relative atrophy rates 

of small and large structures; however, this did constrain our analysis to one particular 

nonlinear model. That said, our principal findings about the age-related atrophy rates of 

thalamic nuclei would not be affected by this issue, as the thalamic nuclei are relatively 

similar in volume. Future studies that more closely compare thalamic and extra-thalamic 

atrophy would likely benefit from examining subregions of large structures, such as cortical 

areas within the cerebral cortex.

Prior studies examining linear and nonlinear models of thalamic volume changes versus age 

have generally found linear relationships (Fjell et al., 2013; Goodro et al., 2012; Hasan et 

al., 2011; Sullivan et al., 2004). A few recent studies have reported nonlinear relationships 

(Coupé et al., 2017; Narvacan et al., 2017; Tullo et al., 2019; Wang et al., 2019). Using 

an exponential model with the capability of modeling linear and nonlinear atrophy, we also 

observed a consistently near-linear decrease throughout the adult lifespan. However, we note 

that our sample was not uniformly distributed over the age range – we had fewer participants 

in the 50–60 year age range, which is an age at which certain cognitive abilities such as 

verbal memory and visuospatial processing begin to decline (Salthouse, 2009; Schaie, 2005). 

Similarly, we note that while certain structures (e.g., whole thalamus, AV, and nucleus 

accumbens) clearly showed a near-linear reduction of volume throughout the age-span, this 

linearity is not so clear for other structures (e.g., cerebral and cerebellar cortices) as a result 

of a higher degree of scatter in our cross-sectional dataset, combined with the non-uniform 

sample distribution. These limitations could be addressed in future longitudinal studies 

with more participants, ideally distributed uniformly over the lifespan, to better detect any 

potential nonlinearities in the age-related atrophy of thalamic nuclear volumes.

Finally, the cross-sectional design adopted here is susceptible to variation in the volumes 

of these structures between individuals and does not provide a direct measure of within-

individual age-related atrophy. Nonetheless, the present findings provide important initial 

evidence for heterogenous rates of volume loss among thalamic nuclei across the lifespan, a 

pattern that should be confirmed in future longitudinal studies.

5. Conclusions

Here, we showed that the thalamic nuclei have high and heterogeneous age-related atrophy 

in the cognitively unimpaired human brain. Thalamic nuclei involved in cognition (AV, MD), 

visual/visual association (LGN, pulvinar), and auditory/vestibular (MGN) function showed 

the highest atrophy rates. These five nuclei also happen to be adjacent to a ventricular 

surface, which may make them susceptible to CSF-mediated factors that affect brain 
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structure. The next tier of atrophy rates involved the nuclei related to motor (VA, VLA, VLP, 

and CM) and somatosensory (VPL) functions, and these five nuclei happen to be located 

at some distance from the nearest ventricular surface. We found no significant hemispheric, 

sex-specific, or education-specific differences in these rates of change for thalamic nuclei. 

These results provide a baseline measure of atrophy rates occurring in thalamic nuclei across 

the cognitively unimpaired adult lifespan. Given that our participants were all cognitively 

unimpaired, our results indicate the range of structural atrophy that can be tolerated by 

the resilient cognitively unimpaired aged brain while preserving cognitive functioning. 

These findings indicate that the thalamus and its nuclei are a component of age-related 

brain atrophy in the cognitively unimpaired human brain. A detailed understanding of such 

atrophy may provide insights into the transition from cognitively unimpaired brain aging to 

pathological neurodegeneration and other neurological and psychiatric disease.
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Fig. 1. 
Segmentations in representative younger and older subjects. (A) Whole thalamus, 

thalamic nuclei, and habenula segmentations using THOMAS and white matter-nulled 

MPRAGE imaging. (B) Extra-thalamic segmentations using FreeSurfer’s SAMSEG tool. 

(C) Intracranial cavity segmentation using SPM12’s Segment and Tissue Volume Utility 

modules.
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Fig. 2. 
Absolute volumes of THOMAS-derived thalamic structures plotted versus age, showing 

heterogeneous atrophy between nuclei. Curves show best fits to the defined exponential 

regression model. Red=right hemisphere. Black=left hemisphere.
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Fig. 3. 
Absolute volumes of the whole thalamus and extra-thalamic structures plotted versus age. 

Curves show best fits to the defined exponential regression model. Red=right hemisphere. 

Black=left hemisphere.
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Fig. 4. 
Comparison of annualized atrophy rates of extra-thalamic and thalamic structures. Lines 

indicate 95% confidence bands, adjusted for multiple comparisons. Note that thalamic nuclei 

atrophy at rates higher than most other structures in the brain. Red=right hemisphere. 

Black=left hemisphere.
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Table 5

Functional specificity in the atrophy of thalamic nuclei with age. Significant between-group differences in 

atrophy rates were tested with paired t-tests. P-values were adjusted for multiple comparisons. Bold numbers 

indicate statistical significance.

Between Group Comparison Adjusted P-Value

Cognitive > Visual 0.039

Cognitive > Auditory/Vestibular 0.026

Cognitive > Motor <0.001

Cognitive > Somatosensory 0.006

Visual > Auditory/Vestibular 0.998

Visual > Motor <0.001

Visual > Somatosensory <0.001

Auditory/Vestibular > Motor <0.001

Auditory/Vestibular > Somatosensory <0.001

Motor > Somatosensory 0.929
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