641 research outputs found

    Brunner and Luther on Scriptural Authority

    Get PDF
    In its struggle with Roman Catholicism the Reformation made its appeal from tradition and an authoritatively interpreting Church to the Scriptures. This basic approach of the Reformers is obvious and universally recognized. Some writers, nonetheless, have failed to note the complete cleavage between Romanism and the Reformers at this point. Emil Brunner sees clearly that whatever the token deference of Rome to the authority of Scripture may be, in point of fact Rome forsakes Scripture and rests her authority in the interpretive and teaching office of the Church. Rome operates with die massgebende Autoritaet der kirchlichen Schriftauslegung

    Brief Studies

    Get PDF
    Sinful Thought and Sinful Deed - Some Insights of Natural Man The Appeal to Scripture as The Living Voice of Go

    A metabolite-derived protein modification integrates glycolysis with KEAP1-NRF2 signalling.

    Get PDF
    Mechanisms that integrate the metabolic state of a cell with regulatory pathways are necessary to maintain cellular homeostasis. Endogenous, intrinsically reactive metabolites can form functional, covalent modifications on proteins without the aid of enzymes1,2, and regulate cellular functions such as metabolism3-5 and transcription6. An important 'sensor' protein that captures specific metabolic information and transforms it into an appropriate response is KEAP1, which contains reactive cysteine residues that collectively act as an electrophile sensor tuned to respond to reactive species resulting from endogenous and xenobiotic molecules. Covalent modification of KEAP1 results in reduced ubiquitination and the accumulation of NRF27,8, which then initiates the transcription of cytoprotective genes at antioxidant-response element loci. Here we identify a small-molecule inhibitor of the glycolytic enzyme PGK1, and reveal a direct link between glycolysis and NRF2 signalling. Inhibition of PGK1 results in accumulation of the reactive metabolite methylglyoxal, which selectively modifies KEAP1 to form a methylimidazole crosslink between proximal cysteine and arginine residues (MICA). This posttranslational modification results in the dimerization of KEAP1, the accumulation of NRF2 and activation of the NRF2 transcriptional program. These results demonstrate the existence of direct inter-pathway communication between glycolysis and the KEAP1-NRF2 transcriptional axis, provide insight into the metabolic regulation of the cellular stress response, and suggest a therapeutic strategy for controlling the cytoprotective antioxidant response in several human diseases

    Combinations of β-lactam or aminoglycoside antibiotics with plectasin are synergistic against methicillin-sensitive and methicillin-resistant Staphylococcus aureus.

    Get PDF
    Bacterial infections remain the leading killer worldwide which is worsened by the continuous emergence of antibiotic resistance. In particular, methicillin-sensitive (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) are prevalent and the latter can be difficult to treat. The traditional strategy of novel therapeutic drug development inevitably leads to emergence of resistant strains, rendering the new drugs ineffective. Therefore, rejuvenating the therapeutic potentials of existing antibiotics offers an attractive novel strategy. Plectasin, a defensin antimicrobial peptide, potentiates the activities of other antibiotics such as β-lactams, aminoglycosides and glycopeptides against MSSA and MRSA. We performed in vitro and in vivo investigations to test against genetically diverse clinical isolates of MSSA (n = 101) and MRSA (n = 115). Minimum inhibitory concentrations (MIC) were determined by the broth microdilution method. The effects of combining plectasin with β-lactams, aminoglycosides and glycopeptides were examined using the chequerboard method and time kill curves. A murine neutropenic thigh model and a murine peritoneal infection model were used to test the effect of combination in vivo. Determined by factional inhibitory concentration index (FICI), plectasin in combination with aminoglycosides (gentamicin, neomycin or amikacin) displayed synergistic effects in 76-78% of MSSA and MRSA. A similar synergistic response was observed when plectasin was combined with β-lactams (penicillin, amoxicillin or flucloxacillin) in 87-89% of MSSA and MRSA. Interestingly, no such interaction was observed when plectasin was paired with vancomycin. Time kill analysis also demonstrated significant synergistic activities when plectasin was combined with amoxicillin, gentamicin or neomycin. In the murine models, plectasin at doses as low as 8 mg/kg augmented the activities of amoxicillin and gentamicin in successful treatment of MSSA and MRSA infections. We demonstrated that plectasin strongly rejuvenates the therapeutic potencies of existing antibiotics in vitro and in vivo. This is a novel strategy that can have major clinical implications in our fight against bacterial infections

    Acidic microenvironment plays a key role in human melanoma progression through a sustained exosome mediated transfer of clinically relevant metastatic molecules

    Get PDF
    Background: Microenvironment cues involved in melanoma progression are largely unknown. Melanoma is highly influenced in its aggressive phenotype by the changes it determinates in its microenvironment, such as pH decrease, in turn influencing cancer cell invasiveness, progression and tissue remodelling through an abundant secretion of exosomes, dictating cancer strategy to the whole host. A role of exosomes in driving melanoma progression under microenvironmental acidity was never described. Methods: We studied four differently staged human melanoma lines, reflecting melanoma progression, under microenvironmental acidic pHs pressure ranging between pH 6.0-6.7. To estimate exosome secretion as a function of tumor stage and environmental pH, we applied a technique to generate native fluorescent exosomes characterized by vesicles integrity, size, density, markers expression, and quantifiable by direct FACS analysis. Functional roles of exosomes were tested in migration and invasion tests. Then we performed a comparative proteomic analysis of acid versus control exosomes to elucidate a specific signature involved in melanoma progression. Results: We found that metastatic melanoma secretes a higher exosome amount than primary melanoma, and that acidic pH increases exosome secretion when melanoma is in an intermediate stage, i.e. metastatic non-invasive. We were thus able to show that acidic pH influences the intercellular cross-talk mediated by exosomes. In fact when exposed to exosomes produced in an acidic medium, pH naïve melanoma cells acquire migratory and invasive capacities likely due to transfer of metastatic exosomal proteins, favoring cell motility and angiogenesis. A Prognoscan-based meta-analysis study of proteins enriched in acidic exosomes, identified 11 genes (HRAS, GANAB, CFL2, HSP90B1, HSP90AB1, GSN, HSPA1L, NRAS, HSPA5, TIMP3, HYOU1), significantly correlating with poor prognosis, whose high expression was in part confirmed in bioptic samples of lymph node metastases. Conclusions: A crucial step of melanoma progression does occur at melanoma intermediate -stage, when extracellular acidic pH induces an abundant release and intra-tumoral uptake of exosomes. Such exosomes are endowed with pro-invasive molecules of clinical relevance, which may provide a signature of melanoma advancement

    Managing ethnic conflict : the menu of institutional engineering

    Get PDF
    The debate on institutional engineering offers options to manage ethnic and other conflicts. This contribution systematically assesses the logic of these institutional designs and the empirical evidence on their functioning. Generally, institutions can work on ethnic conflict by either accommodating (“consociationalists”) or denying (“integrationists”) ethnicity in politics. Looking at individual and combined institutions (e.g. state structure, electoral system, forms of government), the literature review finds that most designs are theoretically ambivalent and that empirical evidence on their effectiveness is mostly inconclusive. The following questions remain open: a) Is politicized ethnicity really a conflict risk? b) What impact does the whole “menu” (not just single institutions) have? and c) How are effects conditioned by the exact nature of conflict risks

    In vitro activity of daptomycin, linezolid and rifampicin on Staphylococcus epidermidis biofilms

    Get PDF
    Owing to their massive use, Staphylococcus epidermidis has recently developed significant resistance to several antibiotics, and became one of the leading causes of hospital-acquired infections. Current antibiotics are typically ineffective in the eradication of bacteria in biofilmassociated persistent infections. Accordingly, the paucity of effective treatment against cells in this mode of growth is a key factor that potentiates the need for new agents active in the prevention or eradication of biofilms. Daptomycin and linezolid belong to the novel antibiotic therapies that are active against gram-positive cocci. On the other hand, rifampicin has been shown to be one of the most potent, prevalent antibiotics against S. epidermidis biofilms. Therefore, the main aim of this study was to study the susceptibility of S. epidermidis biofilm cells to the two newer antimicrobial agents previously mentioned, and compare the results obtained with the antimicrobial effect of rifampicin, widely used in the prevention/treatment of indwelling medical device infections. To this end the in vitro activities of daptomycin, linezolid, and rifampicin on S. epidermidis biofilms were accessed, using these antibiotics at MIC and peak serum concentrations. The results demonstrated that at MIC concentration, rifampicin was the most effective antibiotic tested. At peak serum concentration, both strains demonstrated similar susceptibility to rifampicin and daptomycin, with colony-forming units (CFUs) reductions of approximately 3–4 log10, with a slightly lower response to linezolid, which was also more strain dependent. However, considering all the parameters studied, daptomycin was considered the most effective antibiotic tested, demonstrating an excellent in vitro activity against S. epidermidis biofilm cells. In conclusion, this antibiotic can be strongly considered as an acceptable therapeutic option for S. epidermidis biofilm-associated infections and can represent a potential alternative to rifampicin in serious infections where rifampicin resistance becomes prevalent.Bruna Leite acknowledges the financial support from ISAC/Program Erasmus Munds External Cooperation and the IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus of Gualtar. Fernanda Gomes and Pilar Teixeira fully acknowledge the financial support from Fundacao para a Ciencia e Tecnologia (FCT) through the grants SFRH/BD/32126/2006 and SFRH/BPD/26803/2006, respectively

    Selenium supplementation acting through the induction of thioredoxin reductase and glutathione peroxidase protects the human endothelial cell line EAhy926 from damage by lipid hydroperoxides

    Get PDF
    AbstractThe human endothelial cell line EAhy926 was used to determine the importance of selenium in preventing oxidative damage induced by tert-butyl hydroperoxide (tert-BuOOH) or oxidised low density lipoprotein (LDLox). In cells grown in a low selenium medium, tert-BuOOH and LDLox killed cells in a dose-dependent manner. At 555 mg/l LDLox or 300 μM tert-BuOOH, >80% of cells were killed after 20 h. No significant cell kill was achieved by these agents if cells were pre-incubated for 48 h with 40 nM sodium selenite, a concentration that maximally induced the activities of cytoplasmic glutathione peroxidase (cyGPX; 5.1-fold), phospholipid hydroperoxide glutathione peroxidase (PHGPX;1.9-fold) and thioredoxin reductase (TR; 3.1-fold). Selenium-deficient cells pre-treated with 1 μM gold thioglucose (GTG) (a concentration that inhibited 25% of TR activity but had no inhibitory effect on cyGPX or PHGPX activity) were significantly (P<0.05) more susceptible to tert-BuOOH toxicity (LC50 110 μM) than selenium-deficient cells (LC50 175 μM). This was also the case for LDLox. In contrast, cells pre-treated with 40 nM selenite prior to exposure to GTG were significantly more resistant to damage from tert-BuOOH and LDLox than Se-deficient cells. Treatment with GTG or selenite had no significant effect on intracellular total glutathione concentrations. These results suggest that selenium supplementation, acting through induction of TR and GPX, has the potential to protect the human endothelium from oxidative damage

    Enhancing Specific Disruption of Intracellular Protein Complexes by Hydrocarbon Stapled Peptides Using Lipid Based Delivery

    Get PDF
    Linear peptides can mimic and disrupt protein-protein interactions involved in critical cell signaling pathways. Such peptides however are usually protease sensitive and unable to engage with intracellular targets due to lack of membrane permeability. Peptide stapling has been proposed to circumvent these limitations but recent data has suggested that this method does not universally solve the problem of cell entry and can lead to molecules with off target cell lytic properties. To address these issues a library of stapled peptides was synthesized and screened to identify compounds that bound Mdm2 and activated cellular p53. A lead peptide was identified that activated intracellular p53 with negligible nonspecific cytotoxicity, however it still bound serum avidly and only showed a marginal improvement in cellular potency. These hurdles were overcome by successfully identifying a pyridinium-based cationic lipid formulation, which significantly improved the activity of the stapled peptide in a p53 reporter cell line, principally through increased vesicular escape. These studies under score that stapled peptides, which are cell permeable and target specific, can be identified with rigorous experimental design and that these properties can be improved through use with lipid based formulations. This work should facilitate the clinical translation of stapled peptides

    Reduction of metastasis using a non-volatile buffer

    Get PDF
    The tumor microenvironment is acidic as a consequence of upregulated glycolysis and poor perfusion and this acidity, in turn, promotes invasion and metastasis. We have recently demonstrated that chronic consumption of sodium bicarbonate increased tumor pH and reduced spontaneous and experimental metastases. This occurred without affecting systemic pH, which was compensated. Additionally, these prior data did not rule out the possibility that bicarbonate was working though effects on carbonic anhydrase, and not as a buffer per se. Here, we present evidence that chronic ingestion of a non-volatile buffer, 2-imidazole-1-yl-3-ethoxycarbonylpropionic acid (IEPA) with a pKa of 6.9 also reduced metastasis in an experimental PC3M prostate cancer mouse model. Animals (n = 30) were injected with luciferase expressing PC3M prostate cancer cells either subcutaneously (s.c., n = 10) or intravenously (i.v., n = 20). Four days prior to inoculations, half of the animals for each experiment were provided drinking water containing 200 mM IEPA buffer. Animals were imaged weekly to follow metastasis, and these data showed that animals treated with IEPA had significantly fewer experimental lung metastasis compared to control groups (P < 0.04). Consistent with prior work, the pH of treated tumors was elevated compared to controls. IEPA is observable by in vivo magnetic resonance spectroscopy and this was used to measure the presence of IEPA in the bladder, confirming that it was orally available. The results of this study indicate that metastasis can be reduced by non-volatile buffers as well as bicarbonate and thus the effect appears to be due to pH buffering per se
    corecore