369 research outputs found

    Dwarf galaxies beyond our doorstep: the Centaurus A group

    Get PDF
    The study of dwarf galaxies in groups is a powerful tool for investigating galaxy evolution, chemical enrichment and environmental effects on these objects. Here we present results obtained for dwarf galaxies in the Centaurus A complex, a dense nearby (~4 Mpc) group that contains two giant galaxies and about 30 dwarf companions of different morphologies and stellar contents. We use archival optical (HST/ACS) and near-infrared (VLT/ISAAC) data to derive physical properties and evolutionary histories from the resolved stellar populations of these dwarf galaxies. In particular, for early-type dwarfs we are able to construct metallicity distribution functions, find population gradients and quantify the intermediate-age star formation episodes. For late-type dwarfs, we compute recent (~1 Gyr) star formation histories and study their stellar distribution. We then compare these results with properties of the dwarfs in our Milky Way and in other groups. Our work will ultimately lead to a better understanding of the evolution of dwarf galaxies.Comment: 6 pages, 5 figures; to appear in the proceedings of the conference "A Universe of dwarf galaxies" (Lyon, June 14-18, 2010

    Constraining Inflation

    Full text link
    Slow roll reconstruction is derived from the Hamilton-Jacobi formulation of inflationary dynamics. It automatically includes information from sub-leading terms in slow roll, and facilitatesthe inclusion of priors based on the duration on inflation. We show that at low inflationary scales the Hamilton-Jacobi equations simplify considerably. We provide a new classification scheme for inflationary models, based solely on the number of parameters needed to specify the potential, and provide forecasts for likely bounds on the slow roll parameters from future datasets. A minimal running of the spectral index, induced solely by the first two slow roll parameters (\epsilon and \eta) appears to be effectively undetectable by realistic Cosmic Microwave Background experiments. However, we show that the ability to detect this signal increases with the lever arm in comoving wavenumber, and we conjecture that high redshift 21 cm data may allow tests of second order consistency conditions on inflation. Finally, we point out that the second order corrections to the spectral index are correlated with the inflationary scale, and thus the amplitude of the CMB B-mode.Comment: 32 pages. v

    Discovery of a Gas-Rich Companion to the Extremely Metal-Poor Galaxy DDO 68

    Get PDF
    We present HI spectral-line imaging of the extremely metal-poor galaxy DDO 68. This system has a nebular oxygen abundance of only 3% Z⊙_{\odot}, making it one of the most metal-deficient galaxies known in the local volume. Surprisingly, DDO 68 is a relatively massive and luminous galaxy for its metal content, making it a significant outlier in the mass-metallicity and luminosity-metallicity relationships. The origin of such a low oxygen abundance in DDO 68 presents a challenge for models of the chemical evolution of galaxies. One possible solution to this problem is the infall of pristine neutral gas, potentially initiated during a gravitational interaction. Using archival HI spectral-line imaging obtained with the Karl G. Jansky Very Large Array, we have discovered a previously unknown companion of DDO 68. This low-mass (MHI_{\rm HI} == 2.8×\times107^{7} M⊙_{\odot}), recently star-forming (SFRFUV_{\rm FUV} == 1.4×\times10−3^{-3} M⊙_{\odot} yr−1^{-1}, SFRHα_{\rm H\alpha} << 7×\times10−5^{-5} M⊙_{\odot} yr−1^{-1}) companion has the same systemic velocity as DDO 68 (Vsys_{\rm sys} == 506 km s−1^{-1}; D == 12.74±\pm0.27 Mpc) and is located at a projected distance of 42 kpc. New HI maps obtained with the 100m Robert C. Byrd Green Bank Telescope provide evidence that DDO 68 and this companion are gravitationally interacting at the present time. Low surface brightness HI gas forms a bridge between these objects.Comment: Accepted for publication in the Astrophysical Journal Letter

    In Situ Probes of the First Galaxies and Reionization: Gamma-ray Bursts

    Get PDF
    The first structures in the Universe formed at z>7, at higher redshift than all currently known galaxies. Since GRBs are brighter than other cosmological sources at high redshift and exhibit simple power-law afterglow spectra that is ideal for absorption studies, they serve as powerful tools for studying the early universe. New facilities planned for the coming decade will be able to obtain a large sample of high-redshift GRBs. Such a sample would constrain the nature of the first stars, galaxies, and the reionization history of the Universe.Comment: 8 pages, 3 figures, science white paper submitted to the US Astro2010 Decadal Surve

    Star Formation Histories of the LEGUS Dwarf Galaxies (I): recent History of NGC1705, NGC4449 and Holmberg II

    Get PDF
    We use HST observations from the Legacy Extragalactic UV Survey to reconstruct the recent star formation histories (SFHs) of three actively star-forming dwarf galaxies, NGC4449, Holmberg II and NGC1705, from their UV color-magnitude diagrams (CMDs). We apply a CMD fitting technique using two independent sets of stellar isochrones, PARSEC-COLIBRI and MIST, to assess the uncertainties related to stellar evolution modelling. Irrespective of the adopted stellar models, all the three dwarfs are found to have had almost constant star formation rates (SFRs) in the last 100-200 Myr, with modest enhancements (a factor of ∼\sim2) above the 100 Myr-averaged-SFR. Significant differences among the three dwarfs are found in the overall SFR, the timing of the most recent peak and the SFR//area. The Initial Mass Function (IMF) of NGC1705 and Holmberg II is consistent with a Salpeter slope down to ≈\approx 5 M⊙_{\odot}, whereas it is slightly flatter, s=−2.0=-2.0, in NGC4449. The SFHs derived with the two different sets of stellar models are consistent with each other, except for some quantitative details, attributable to their input assumptions. They also share the drawback that all synthetic diagrams predict a clear separation in color between upper main sequence and helium burning stars, which is not apparent in the data. Since differential reddening, significant in NGC4449, or unresolved binaries don't appear to be sufficient to fill the gap, we suggest this calls for a revision of both sets of stellar evolutionary tracks.Comment: 22 pages, 17 figures, accepted for publication on Ap

    The Kinetic Sunyaev-Zel'dovich Effect from Reionization

    Full text link
    During the epoch of reionization, local variations in the ionized fraction (patchiness) imprint arcminute-scale temperature anisotropies in the CMB through the kinetic Sunyaev-Zel'dovich (kSZ) effect. We employ an improved version of an analytic model of reionization devised in Furlanetto et al.(2004) to calculate the kSZ anisotropy from patchy reionization. This model uses extended Press-Schechter theory to determine the distribution and evolution of HII bubbles and produces qualitatively similar reionization histories to those seen in recent numerical simulations. We find that the angular power spectrum of the kSZ anisotropies depends strongly on the size distribution of the HII bubbles and on the duration of reionization. In addition, we show that upcoming measurements of the kSZ effect should be able to distinguish between several popular reionization scenarios. In particular, the amplitude of the patchy power spectrum for reionization scenarios in which the IGM is significantly ionized by Population III stars (or by mini-quasars/decaying particles) can be larger (or smaller) by over a factor of 3 than the amplitude in more traditional reionization histories (with temperature anisotropies that range between 0.5 and 3 micro-Kelvin at l = 5000). We highlight the differences in the kSZ signal between many possible reionization morphologies and discuss the constraints that future observations of the kSZ will place on this epoch.Comment: 14 pages, 10 figures. Accepted for publication in Ap

    The signature of the first stars in atomic hydrogen at redshift 20

    Get PDF
    Dark and baryonic matter moved at different velocities in the early Universe, which strongly suppressed star formation in some regions. This was estimated to imprint a large-scale fluctuation signal of about 2 mK in the 21-cm spectral line of atomic hydrogen associated with stars at a redshift of 20, although this estimate ignored the critical contribution of gas heating due to X-rays and major enhancements of the suppression. A large velocity difference reduces the abundance of halos and requires the first stars to form in halos of about a million solar masses, substantially greater than previously expected. Here we report a simulation of the distribution of the first stars at z=20 (cosmic age of ~180 Myr), incorporating all these ingredients within a 400 Mpc box. We find that the 21-cm signature of these stars is an enhanced (10 mK) fluctuation signal on the 100-Mpc scale, characterized by a flat power spectrum with prominent baryon acoustic oscillations. The required sensitivity to see this signal is achievable with an integration time of a thousand hours with an instrument like the Murchison Wide-field Array or the Low Frequency Array but designed to operate in the range of 50-100 MHz.Comment: 27 pages, 5 figures, close (but not exact) match to accepted version. Basic results unchanged from first submitted version, but justification strengthened, title and abstract modified, and substantial Supplementary Material added. Originally first submitted for publication on Oct. 12, 201

    Fibulin-1 is required for morphogenesis of neural crest-derived structures

    Get PDF
    AbstractHere we report that mouse embryos homozygous for a gene trap insertion in the fibulin-1 (Fbln1) gene are deficient in Fbln1 and exhibit cardiac ventricular wall thinning and ventricular septal defects with double outlet right ventricle or overriding aorta. Fbln1 nulls also display anomalies of aortic arch arteries, hypoplasia of the thymus and thyroid, underdeveloped skull bones, malformations of cranial nerves and hemorrhagic blood vessels in the head and neck. The spectrum of malformations is consistent with Fbln1 influencing neural crest cell (NCC)-dependent development of these tissues. This is supported by evidence that Fbln1 expression is associated with streams of cranial NCCs migrating adjacent to rhombomeres 2–7 and that Fbln1-deficient embryos display patterning anomalies of NCCs forming cranial nerves IX and X, which derive from rhombomeres 6 and 7. Additionally, Fbln1-deficient embryos show increased apoptosis in areas populated by NCCs derived from rhombomeres 4, 6 and 7. Based on these findings, it is concluded that Fbln1 is required for the directed migration and survival of cranial NCCs contributing to the development of pharyngeal glands, craniofacial skeleton, cranial nerves, aortic arch arteries, cardiac outflow tract and cephalic blood vessels

    Inflation and the Scale Dependent Spectral Index: Prospects and Strategies

    Full text link
    We consider the running of the spectral index as a probe of both inflation itself, and of the overall evolution of the very early universe. Surveying a collection of simple single field inflationary models, we confirm that the magnitude of the running is relatively consistent, unlike the tensor amplitude, which varies by orders of magnitude. Given this target, we confirm that the running is potentially detectable by future large scale structure or 21 cm observations, but that only the most futuristic measurements can distinguish between these models on the basis of their running. For any specified inflationary scenario, the combination of the running index and unknown post-inflationary expansion history induces a theoretical uncertainty in the predicted value of the spectral index. This effect can easily dominate the statistical uncertainty with which Planck and its successors are expected to measure the spectral index. More positively, upcoming cosmological experiments thus provide an intriguing probe of physics between TeV and GUT scales by constraining the reheating history associated with any specified inflationary model, opening a window into the "primordial dark age" that follows the end of inflation.Comment: 32 pages. v2 and v3 Minor reference updates /clarification

    PAPER-64 Constraints On Reionization II: The Temperature Of The z=8.4 Intergalactic Medium

    Get PDF
    We present constraints on both the kinetic temperature of the intergalactic medium (IGM) at z=8.4, and on models for heating the IGM at high-redshift with X-ray emission from the first collapsed objects. These constraints are derived using a semi-analytic method to explore the new measurements of the 21 cm power spectrum from the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER), which were presented in a companion paper, Ali et al. (2015). Twenty-one cm power spectra with amplitudes of hundreds of mK^2 can be generically produced if the kinetic temperature of the IGM is significantly below the temperature of the Cosmic Microwave Background (CMB); as such, the new results from PAPER place lower limits on the IGM temperature at z=8.4. Allowing for the unknown ionization state of the IGM, our measurements find the IGM temperature to be above ~5 K for neutral fractions between 10% and 85%, above ~7 K for neutral fractions between 15% and 80%, or above ~10 K for neutral fractions between 30% and 70%. We also calculate the heating of the IGM that would be provided by the observed high redshift galaxy population, and find that for most models, these galaxies are sufficient to bring the IGM temperature above our lower limits. However, there are significant ranges of parameter space that could produce a signal ruled out by the PAPER measurements; models with a steep drop-off in the star formation rate density at high redshifts or with relatively low values for the X-ray to star formation rate efficiency of high redshift galaxies are generally disfavored. The PAPER measurements are consistent with (but do not constrain) a hydrogen spin temperature above the CMB temperature, a situation which we find to be generally predicted if galaxies fainter than the current detection limits of optical/NIR surveys are included in calculations of X-ray heating.Comment: companion paper to Ali et al. (2015), ApJ 809, 61; matches version accepted to ApJ; 11 pages, 7 figure
    • …
    corecore