68 research outputs found

    Lifetime of d-holes at Cu surfaces: Theory and experiment

    Get PDF
    We have investigated the hole dynamics at copper surfaces by high-resolution angle-resolved photoemission experiments and many-body quasiparticle GW calculations. Large deviations from a free-electron-like picture are observed both in the magnitude and the energy dependence of the lifetimes, with a clear indication that holes exhibit longer lifetimes than electrons with the same excitation energy. Our calculations show that the small overlap of d- and sp-states below the Fermi level is responsible for the observed enhancement. Although there is qualitative good agreement of our theoretical predictions and the measured lifetimes, there still exist some discrepancies pointing to the need of a better description of the actual band structure of the solid.Comment: 15 pages, 7 figures, 1 table, to appear in Phys. Rev.

    Hole dynamics in noble metals

    Full text link
    We present a detailed analysis of hole dynamics in noble metals (Cu and Au), by means of first-principles many-body calculations. While holes in a free-electron gas are known to live shorter than electrons with the same excitation energy, our results indicate that d-holes in noble metals exhibit longer inelastic lifetimes than excited sp-electrons, in agreement with experiment. The density of states available for d-hole decay is larger than that for the decay of excited electrons; however, the small overlap between d- and sp-states below the Fermi level increases the d-hole lifetime. The impact of d-hole dynamics on electron-hole correlation effects, which are of relevance in the analysis of time-resolved two-photon photoemission experiments, is also addressed.Comment: 4 pages, 2 figures, to appear in Phys. Rev. Let

    Dynamics of Excited Electrons in Copper: Role of Auger Electrons

    Full text link
    Within a theoretical model based on the Boltzmann equation, we analyze in detail the structure of the unusual peak recently observed in the relaxation time in Cu. In particular, we discuss the role of Auger electrons in the electron dynamics and its dependence on the d-hole lifetime, the optical transition matrix elements and the laser pulse duration. We find that the Auger contribution to the distribution is very sensitive to both the d-hole lifetime tau_h and the laser pulse duration tau_l and can be expressed as a monotonic function of tau_l/tau_h. We have found that for a given tau_h, the Auger contribution is significantly smaller for a short pulse duration than for a longer one. We show that the relaxation time at the peak depends linearly on the d-hole lifetime, but interestingly not on the amount of Auger electrons generated. We provide a simple expression for the relaxation time of excited electrons which shows that its shape can be understood by a phase space argument and its amplitude is governed by the d-hole lifetime. We also find that the height of the peak depends on both the ratio of the optical transition matrix elements R=|M_{d \to sp}|^2/|M_{sp \to sp}|^2 and the laser pulse duration. Assuming a reasonable value for the ratio, namely R = 2, and a d-hole lifetime of tau_h=35 fs, we obtain for the calculated height of the peak Delta tau_{th}=14 fs, in fair agreement with Delta tau_{exp} \approx 17 fs measured for polycrystalline Cu.Comment: 6 pages, 6 figure

    Photoemission and x-ray absorption study of MgC_(1-x)Ni_3

    Full text link
    We investigated electronic structure of MgC_(1-x)Ni_3 with photoemission and x-ray absorption spectroscopy. Both results show that overall band structure is in reasonable agreement with band structure calculations including the existence of von Hove singularity (vHs)near E_F. However, we find that the sharp vHs peak theoretically predicted near the E_F is substantially suppressed. As for the Ni core level and absorption spectrum, there exist the satellites of Ni 2p which have a little larger energy separation and reduced intensity compared to the case of Ni-metal. These facts indicate that correlation effects among Ni 3d electrons may be important to understand various physical properties.Comment: 12 pages, 4 figure

    Atomic-scale images of charge ordering in a mixed-valence manganite

    Get PDF
    Transition-metal perovskite oxides exhibit a wide range of extraordinary but imperfectly understood phenomena. Charge, spin, orbital, and lattice degrees of freedom all undergo order-disorder transitions in regimes not far from where the best-known of these phenomena, namely high-temperature superconductivity of the copper oxides, and the 'colossal' magnetoresistance of the manganese oxides, occur. Mostly diffraction techniques, sensitive either to the spin or the ionic core, have been used to measure the order. Unfortunately, because they are only weakly sensitive to valence electrons and yield superposition of signals from distinct mesoscopic phases, they cannot directly image mesoscopic phase coexistence and charge ordering, two key features of the manganites. Here we describe the first experiment to image charge ordering and phase separation in real space with atomic-scale resolution in a transition metal oxide. Our scanning tunneling microscopy (STM) data show that charge order is correlated with structural order, as well as with whether the material is locally metallic or insulating, thus giving an atomic-scale basis for descriptions of the manganites as mixtures of electronically and structurally distinct phases.Comment: 8 pages, 4 figures, 19 reference

    Fermi Surface, Surface States, and Surface Reconstruction in Sr2RuO4

    Full text link
    The electronic structure of Sr2RuO4 is investigated by high angular resolution ARPES at several incident photon energies. We address the controversial issues of the Fermi surface (FS) topology and of the van Hove singularity at the M point, showing that a surface state and the replica of the primary FS due to (sqrt2 x sqrt2) surface reconstruction are responsible for previous conflicting interpretations. The FS thus determined by ARPES is consistent with the de Haas-van Alphen results, and it provides additional information on the detailed shape of the alpha, beta and gamma sheets.Comment: Final version for Physical Review Letters. Revtex, 4 pages, 4 postscript pictures embedded in the tex

    Superconductivity near the vibrational mode instability in MgCNi3

    Full text link
    To understand the role of electron-phonon interaction in superconducting MgCNi3_{3} we have performed density functional based linear response calculations of its lattice dynamical properties. A large coupling constant λ% \lambda = 1.51 is predicted and contributing phonons are identified as displacements of Ni atoms towards octahedral interstitials of the perovskite lattice. Instabilities found for some vibrational modes emphasize the role of anharmonic effects in resolving experimental controversies.Comment: 4 pages, 4 eps figures, replaces the older versio

    Image resonance in the many-body density of states at a metal surface

    Get PDF
    The electronic properties of a semi-infinite metal surface without a bulk gap are studied by a formalism that is able to account for the continuous spectrum of the system. The density of states at the surface is calculated within the GW approximation of many-body perturbation theory. We demonstrate the presence of an unoccupied surface resonance peaked at the position of the first image state. The resonance encompasses the whole Rydberg series of image states and cannot be resolved into individual peaks. Its origin is the shift in spectral weight when many-body correlation effects are taken into account

    Dynamics of Excited Electrons in Copper and Ferromagnetic Transition Metals: Theory and Experiment

    Get PDF
    Both theoretical and experimental results for the dynamics of photoexcited electrons at surfaces of Cu and the ferromagnetic transition metals Fe, Co, and Ni are presented. A model for the dynamics of excited electrons is developed, which is based on the Boltzmann equation and includes effects of photoexcitation, electron-electron scattering, secondary electrons (cascade and Auger electrons), and transport of excited carriers out of the detection region. From this we determine the time-resolved two-photon photoemission (TR-2PPE). Thus a direct comparison of calculated relaxation times with experimental results by means of TR-2PPE becomes possible. The comparison indicates that the magnitudes of the spin-averaged relaxation time \tau and of the ratio \tau_\uparrow/\tau_\downarrow of majority and minority relaxation times for the different ferromagnetic transition metals result not only from density-of-states effects, but also from different Coulomb matrix elements M. Taking M_Fe > M_Cu > M_Ni = M_Co we get reasonable agreement with experiments.Comment: 23 pages, 11 figures, added a figure and an appendix, updated reference

    Surface electronic structure of Sr2RuO4

    Full text link
    We have addressed the possibility of surface ferromagnetism in Sr2RuO4 by investigating its surface electronic states by angle-resolved photoemission spectroscopy (ARPES). By cleaving samples under different conditions and using various photon energies, we have isolated the surface from the bulk states. A comparison with band structure calculations indicates that the ARPES data are most readily explained by a nonmagnetic surface reconstruction.Comment: 4 pages, 4 figures, RevTex, submitted to Phys. Rev.
    • …
    corecore