33,580 research outputs found

    Complex Bifurcation from Real Paths

    Get PDF
    A new bifurcation phenomenon, called complex bifurcation, is studied. The basic idea is simply that real solution paths of real analytic problems frequently have complex paths bifurcating from them. It is shown that this phenomenon occurs at fold points, at pitchfork bifurcation points, and at isola centers. It is also shown that perturbed bifurcations can yield two disjoint real solution branches that are connected by complex paths bifurcating from the perturbed solution paths. This may be useful in finding new real solutions. A discussion of how existing codes for computing real solution paths may be trivially modified to compute complex paths is included, and examples of numerically computed complex solution paths for a nonlinear two point boundary value problem, and a problem from fluid mechanics are given

    Modeling of the Terminal Velocities of the Dust Ejected Material by the Impact

    Get PDF
    We compute the distribution of velocities of the particles ejected by the impact of the projectile released from NASA Deep Impact spacecraft on the nucleus of comet 9P/Tempel 1 on the successive 20 hours following the collision. This is performed by the development and use of an ill-conditioned inverse problem approach, whose main ingredients are a set of observations taken by the Narrow Angle Camera (NAC) of OSIRIS onboard the Rosetta spacecraft, and a set of simple models of the expansion of the dust ejecta plume for different velocities. Terminal velocities are derived using a maximum likelihood estimator. We compare our results with published estimates of the expansion velocity of the dust cloud. Our approach and models reproduce well the velocity distribution of the ejected particles. We consider these successful comparisons of the velocities as an evidence for the appropriateness of the approach. This analysis provides a more thorough understanding of the properties of the Deep Impact dust cloud.Comment: Comments: 6 pages, 2 Postscript figures, To appear in the proceedings of "Deep Impact as a World Observatory Event - Synergies in Space, Time", ed. Hans Ulrich Kaeufl and Chris Sterken, Springer-Verla

    Surface-material maps of Viking landing sites on Mars

    Get PDF
    Researchers mapped the surface materials at the Viking landing sites on Mars to gain a better understanding of the materials and rock populations at the sites and to provide information for future exploration. The maps extent to about 9 m in front of each lander and are about 15 m wide - an area comparable to the area of a pixel in high resolution Viking Orbiter images. The maps are divided into the near and far fields. Data for the near fields are from 1/10 scale maps, umpublished maps, and lander images. Data for the far fields are from 1/20 scale contour maps, contoured lander camera mosaics, and lander images. Rocks are located on these maps using stereometric measurements and the contour maps. Frequency size distribution of rocks and the responses of soil-like materials to erosion by engine exhausts during landings are discussed

    Theory of isotope effect in photoemission spectra of high-T_c superconducting cuprates

    Full text link
    We investigate the effect of isotope substitution on the electronic spectral functions within a model where the charge carriers are coupled to bosonic charge-order (CO) fluctuations centered around some mean frequency \omega_0 and with enhanced scattering at wave-vector q_c. It is shown that a mass dependence of \omega_0 is not sufficient in order to account, especially at high energies, for the dispersion shifts experimentally observed in an optimally doped superconducting cuprate. We argue that isotope substitution induces a change of the spatial CO correlations which gives good account of the experimental data.Comment: 5 pages and 2 figure

    Electrical transport in the ferromagnetic state of manganites: Small-polaron metallic conduction at low temperatures

    Full text link
    We report measurements of the resistivity in the ferromagnetic state of epitaxial thin films of La_{1-x}Ca_{x}MnO_{3} and the low temperature specific heat of a polycrystalline La_{0.8}Ca_{0.2}MnO_{3}. The resistivity below 100 K can be well fitted by \rho - \rho_{o} = E \omega_{s}/sinh^{2}(\hbar \omega_{s}/2k_{B}T) with \hbar \omega_{s}/k_{B} \simeq 100 K and E being a constant. Such behavior is consistent with small-polaron coherent motion which involves a relaxation due to a soft optical phonon mode. The specific heat data also suggest the existence of such a phonon mode. The present results thus provide evidence for small-polaron metallic conduction in the ferromagnetic state of manganites.Comment: 4 pages, 4 figures, submitted to PR

    ^25Mg NMR study of the MgB_2 superconductor

    Full text link
    ^25Mg NMR spectra and nuclear spin-lattice relaxation time, T_1, have been measured in polycrystalline ^25MgB_2 with a superconducting transition temperature T_c = 39.0 K in zero magnetic field. From the first order and second order quadrupole perturbed NMR spectrum a quadrupole coupling frequency nu_Q = 222(1.5) kHz is obtained. T_1T = 1090(50) sK and Knight shift K_c = 242(4) ppm are temperature independent in the normal conducting phase. The ^25Mg Korringa ratio equals to 0.95 which is very close to the ideal value of unity for s-electrons. The comparison of the experimental nu_Q, T_1T, and K_c with the corresponding values obtained by LDA calculations shows an excellent agreement for all three quantities.Comment: 4 pages including 4 eps-figures, revtex

    A Superbubble Feedback Model for Galaxy Simulations

    Full text link
    We present a new stellar feedback model that reproduces superbubbles. Superbubbles from clustered young stars evolve quite differently to individual supernovae and are substantially more efficient at generating gas motions. The essential new components of the model are thermal conduction, sub-grid evaporation and a sub-grid multi-phase treatment for cases where the simulation mass resolution is insufficient to model the early stages of the superbubble. The multi-phase stage is short compared to superbubble lifetimes. Thermal conduction physically regulates the hot gas mass without requiring a free parameter. Accurately following the hot component naturally avoids overcooling. Prior approaches tend to heat too much mass, leaving the hot ISM below 10610^6 K and susceptible to rapid cooling unless ad-hoc fixes were used. The hot phase also allows feedback energy to correctly accumulate from multiple, clustered sources, including stellar winds and supernovae. We employ high-resolution simulations of a single star cluster to show the model is insensitive to numerical resolution, unresolved ISM structure and suppression of conduction by magnetic fields. We also simulate a Milky Way analog and a dwarf galaxy. Both galaxies show regulated star formation and produce strong outflows.Comment: 13 pages, 13 figures; replaced with version accepted to MNRA
    • …
    corecore