2,482 research outputs found
Fragmentation, infall, and outflow around the showcase massive protostar NGC7538 IRS1 at 500 AU resolution
Aims: Revealing the fragmentation, infall, and outflow processes in the
immediate environment around massive young stellar objects is crucial for
understanding the formation of the most massive stars. Methods: With this goal
in mind we present the so far highest spatial-resolution thermal submm line and
continuum observations toward the young high-mass protostar NGC7538 IRS1. Using
the Plateau de Bure Interferometer in its most extended configuration at 843mum
wavelength, we achieved a spatial resolution of 0.2"x0.17", corresponding to
~500AU at a distance of 2.7\,kpc. Results: For the first time, we have observed
the fragmentation of the dense inner core of this region with at least three
subsources within the inner 3000 AU. The outflow exhibits blue- and red-shifted
emission on both sides of the central source indicating that the current
orientation has to be close to the line-of-sight, which differs from other
recent models. We observe rotational signatures in northeast-southwest
direction; however, even on scales of 500 AU, we do not identify any Keplerian
rotation signatures. This implies that during the early evolutionary stages any
stable Keplerian inner disk has to be very small (<=500 AU). The high-energy
line HCN(4-3)v2=1 (E_u/k=1050K) is detected over an extent of approximately
3000 AU. In addition to this, the detection of red-shifted absorption from this
line toward the central dust continuum peak position allows us to estimate
infall rates of ~1.8x10^(-3)Msun/yr on the smallest spatial scales. Although
all that gas will not necessarily be accreted onto the central protostar,
nevertheless, such inner core infall rates are among the best proxies of the
actual accretion rates one can derive during the early embedded star formation
phase. These data are consistent with collapse simulations and the observed
high multiplicity of massive stars.Comment: Accepted for Astronomy & Astrophysics, 8 pages, also available at
http://www.mpia.de/homes/beuther/papers.htm
Photovoltaic effect in ferroelectric ceramics
The ceramic structure was simulated in a form that is more tractable to correlation between experiment and theory. Single crystals (of barium titanate) were fabricated in a simple corrugated structure in which the pedestals of the corrugation simulated the grain while the intervening cuts could be filled with materials simulating the grain boundaries. The observed photovoltages were extremely small (100 mv)
Characterization of Infrared Dark Clouds -- NH Observations of an Absorption-contrast Selected IRDC Sample
Despite increasing research in massive star formation, little is known about
its earliest stages. Infrared Dark Clouds (IRDCs) are cold, dense and massive
enough to harbour the sites of future high-mass star formation. But up to now,
mainly small samples have been observed and analysed. To understand the
physical conditions during the early stages of high-mass star formation, it is
necessary to learn more about the physical conditions and stability in
relatively unevolved IRDCs. Thus, for characterising IRDCs studies of large
samples are needed. We investigate a complete sample of 218 northern hemisphere
high-contrast IRDCs using the ammonia (1,1)- and (2,2)-inversion transitions.
We detected ammonia (1,1)-inversion transition lines in 109 of our IRDC
candidates. Using the data we were able to study the physical conditions within
the star-forming regions statistically. We compared them with the conditions in
more evolved regions which have been observed in the same fashion as our sample
sources. Our results show that IRDCs have, on average, rotation temperatures of
15 K, are turbulent (with line width FWHMs around 2 km s), have ammonia
column densities on the order of cm and molecular hydrogen
column densities on the order of cm. Their virial masses are
between 100 and a few 1000 M. The comparison of bulk kinetic and
potential energies indicate that the sources are close to virial equilibrium.
IRDCs are on average cooler and less turbulent than a comparison sample of
high-mass protostellar objects, and have lower ammonia column densities. Virial
parameters indicate that the majority of IRDCs are currently stable, but are
expected to collapse in the future.Comment: 21 pages, 11 figures, 7 tables. Paper accepted for publication in
Astronomy & Astrophysic
Far-infrared photometric observations of the outer planets and satellites with Herschel-PACS
We present all Herschel PACS photometer observations of Mars, Saturn, Uranus,
Neptune, Callisto, Ganymede, and Titan. All measurements were carefully
inspected for quality problems, were reduced in a (semi-)standard way, and were
calibrated. The derived flux densities are tied to the standard PACS photometer
response calibration, which is based on repeated measurements of five fiducial
stars. The overall absolute flux uncertainty is dominated by the estimated 5%
model uncertainty of the stellar models in the PACS wavelength range between 60
and 210 micron. A comparison with the corresponding planet and satellite models
shows excellent agreement for Uranus, Neptune, and Titan, well within the
specified 5%. Callisto is brighter than our model predictions by about 4-8%,
Ganymede by about 14-21%. We discuss possible reasons for the model offsets.
The measurements of these very bright point-like sources, together with
observations of stars and asteroids, show the high reliability of the PACS
photometer observations and the linear behavior of the PACS bolometer source
fluxes over more than four orders of magnitude (from mJy levels up to more than
1000 Jy). Our results show the great potential of using the observed solar
system targets for cross-calibration purposes with other ground-based,
airborne, and space-based instruments and projects. At the same time, the PACS
results will lead to improved model solutions for future calibration
applications.Comment: 25 pages, 11 figures, 11 table
Mid - infrared interferometry of massive young stellar objects II Evidence for a circumstellar disk surrounding the Kleinmann - Wright object
The formation scenario for massive stars is still under discussion. To
further constrain current theories, it is vital to spatially resolve the
structures from which material accretes onto massive young stellar objects
(MYSOs). Due to the small angular extent of MYSOs, one needs to overcome the
limitations of conventional thermal infrared imaging, regarding spatial
resolution, in order to get observational access to the inner structure of
these objects.We employed mid - infrared interferometry, using the MIDI
instrument on the ESO /VLTI, to investigate the Kleinmann - Wright Object, a
massive young stellar object previously identified as a Herbig Be star
precursor. Dispersed visibility curves in the N- band (8 - 13 {\mu}m) have been
obtained at 5 interferometric baselines. We show that the mid - infrared
emission region is resolved. A qualitative analysis of the data indicates a non
- rotationally symmetric structure, e.g. the projection of an inclined disk. We
employed extensive radiative transfer simulations based on spectral energy
distribution fitting. Since SED - only fitting usually yields degenerate
results, we first employed a statistical analysis of the parameters provided by
the radiative transfer models. In addition, we compared the ten best - fitting
self - consistent models to the interferometric observations. Our analysis of
the Kleinmann - Wright Object suggests the existence of a circumstellar disk of
0.1M\odot at an intermediate inclination of 76\circ, while an additional dusty
envelope is not necessary for fitting the data. Furthermore, we demonstrate
that the combination of IR interferometry with radiative transfer simulations
has the potential to resolve ambiguities arising from the analysis of spectral
energy distributions alone.Comment: 12 pages, 22 figures accepted for publication in A&
Hierarchical fragmentation and collapse signatures in a high-mass starless region
Aims: Understanding the fragmentation and collapse properties of the dense
gas during the onset of high-mass star formation. Methods: We observed the
massive (~800M_sun) starless gas clump IRDC18310-4 with the Plateau de Bure
Interferometer (PdBI) at sub-arcsecond resolution in the 1.07mm continuum
andN2H+(3-2) line emission. Results: Zooming from a single-dish low-resolution
map to previous 3mm PdBI data, and now the new 1.07mm continuum observations,
the sub-structures hierarchically fragment on the increasingly smaller spatial
scales. While the fragment separations may still be roughly consistent with
pure thermal Jeans fragmentation, the derived core masses are almost two orders
of magnitude larger than the typical Jeans mass at the given densities and
temperatures. However, the data can be reconciled with models using
non-homogeneous initial density structures, turbulence and/or magnetic fields.
While most sub-cores remain (far-)infrared dark even at 70mum, we identify weak
70mum emission toward one core with a comparably low luminosity of ~16L_sun,
re-enforcing the general youth of the region. The spectral line data always
exhibit multiple spectral components toward each core with comparably small
line widths for the individual components (in the 0.3 to 1.0km/s regime). Based
on single-dish C18O(2-1) data we estimate a low virial-to-gas-mass ratio
<=0.25. We discuss that the likely origin of these spectral properties may be
the global collapse of the original gas clump that results in multiple spectral
components along each line of sight. Even within this dynamic picture the
individual collapsing gas cores appear to have very low levels of internal
turbulence.Comment: 8 pages, 4 figures, A&A in pres
Chemical evolution in the early phases of massive star formation II: Deuteration
The chemical evolution in high-mass star-forming regions is still poorly
constrained. Studying the evolution of deuterated molecules allows to
differentiate between subsequent stages of high-mass star formation regions due
to the strong temperature dependence of deuterium isotopic fractionation. We
observed a sample of 59 sources including 19 infrared dark clouds, 20 high-mass
protostellar objects, 11 hot molecular cores and 9 ultra-compact HII regions in
the (3-2) transitions of the four deuterated molecules, DCN, DNC, DCO+ and N2D+
as well as their non-deuterated counterpart. The overall detection fraction of
DCN, DNC and DCO+ is high and exceeds 50% for most of the stages. N2D+ was only
detected in a few infrared dark clouds and high-mass protostellar objects. It
can be related to problems in the bandpass at the frequency of the transition
and to low abundances in the more evolved, warmer stages. We find median D/H
ratios of ~0.02 for DCN, ~0.005 for DNC, ~0.0025 for DCO+ and ~0.02 for N2D+.
While the D/H ratios of DNC, DCO+ and N2D+ decrease with time, DCN/HCN peaks at
the hot molecular core stage. We only found weak correlations of the D/H ratios
for N2D+ with the luminosity of the central source and the FWHM of the line,
and no correlation with the H2 column density. In combination with a previously
observed set of 14 other molecules (Paper I) we fitted the calculated column
densities with an elaborate 1D physico-chemical model with time-dependent
D-chemistry including ortho- and para-H2 states. Good overall fits to the
observed data have been obtained the model. It is one of the first times that
observations and modeling have been combined to derive chemically based
best-fit models for the evolution of high-mass star formation including
deuteration.Comment: 26 pages, 16 figures, accepted at A&
The Herschel/PACS view of disks around low-mass stars in Chamaleon-I
Circumstellar disks are expected to be the birthplaces of planets. The
potential for forming one or more planets of various masses is essentially
driven by the initial mass of the disks. We present and analyze Herschel/PACS
observations of disk-bearing M-type stars that belong to the young ~2 Myr old
Chamaleon-I star forming region. We used the radiative transfer code RADMC to
successfully model the SED of 17 M-type stars detected at PACS wavelengths. We
first discuss the relatively low detection rates of M5 and later spectral type
stars with respect to the PACS sensitivity, and argue their disks masses, or
flaring indices, are likely to be low. For M0 to M3 stars, we find a relatively
broad range of disk masses, scale heights, and flaring indices. Via a
parametrization of dust stratification, we can reproduce the peak fluxes of the
10 m emission feature observed with Spitzer/IRS, and find that disks
around M-type stars may display signs of dust sedimentation. The Herschel/PACS
observations of low-mass stars in Cha-I provide new constraints on their disk
properties, overall suggesting that disk parameters for early M-type stars are
comparable to those for more massive stars (e.g., comparable scale height and
flaring angles). However, regions of the disks emitting at about 100 m may
still be in the optically thick regime, preventing direct determination of disk
masses. Thus the modeled disk masses should be considered as lower limits.
Still, we are able to extend the wavelength coverage of SED models and start
characterizing effects such as dust sedimentation, an effort leading the way
towards ALMA observations of these low-mass stars
- …
