887 research outputs found
H-2-driven biotransformation of n-octane to 1-octanol by a recombinant Pseudomonas putida strain co-synthesizing an O-2-tolerant hydrogenase and a P450 monooxygenase
An in vivo biotransformation system is presented that affords the hydroxylation of n-octane to 1-octanol on the basis of NADH-dependent CYP153A monooxygenase and NAD(+)-reducing hydrogenase heterologously synthesized in a bacterial host. The hydrogenase sustains H-2-driven NADH cofactor regeneration even in the presence of O-2, the co-substrate of monooxygenase.DFG, EXC 314, Unifying Concepts in CatalysisEC/FP7/297503/EU/Modular beads for regeneration of bio-cofactors in enzyme-catalysed synthesis/HydRege
MOBILE MAPPING OF THE LA CORONA LAVATUBE ON LANZAROTE
Abstract. Planetary surfaces consist of rough terrain and cave-like environments. Future planetary exploration demands for accurate mapping. However, recent backpack mobile mapping systems are mostly tested in structured, indoor environments. This paper evaluates the use of a backpack mobile mapping system in a cave-like environment. The experiments demonstrate the abilities of an continuous-time optimization approach by mapping part of a lavatube of the La Corona volcano system on Lanzarote. We compare two strategies for trajectory estimation relying either on 2D or 3D laser scanners and show that a 3D laser scanner substantially improved the final results.</p
МНОГОФАЗНО-ОДНОФАЗНыЕ РЕВЕРСИВНыЕ ЭЛЕКТРОМАШИННО-ВЕНТИЛЬНыЕ ПРЕОБРАЗОВАТЕЛИ БЕСКОНТАКТНыХ МАШИН ДВОЙНОГО ПИТАНИЯ
Розглянуто процеси в багатофазно-однофазних реверсивних електромашинно-вентильних перетворю-
вачах безконтактних машин подвійного живлення.
Рассмотрены процессы в многофазно-однофазных реверсивных электромашинно-вентильных преобра-
зователях бесконтактных машин двойного питания
Classification and stability of simple homoclinic cycles in R^5
The paper presents a complete study of simple homoclinic cycles in R^5. We
find all symmetry groups Gamma such that a Gamma-equivariant dynamical system
in R^5 can possess a simple homoclinic cycle. We introduce a classification of
simple homoclinic cycles in R^n based on the action of the system symmetry
group. For systems in R^5, we list all classes of simple homoclinic cycles. For
each class, we derive necessary and sufficient conditions for asymptotic
stability and fragmentary asymptotic stability in terms of eigenvalues of
linearisation near the steady state involved in the cycle. For any action of
the groups Gamma which can give rise to a simple homoclinic cycle, we list
classes to which the respective homoclinic cycles belong, thus determining
conditions for asymptotic stability of these cycles.Comment: 34 pp., 4 tables, 30 references. Submitted to Nonlinearit
COMPARISON OF TWO DIFFERENT APPROACHES FOR BRAIN ACTIVITY DETECTION IN FMRI: SPM-MAP AND SPM-GLM
ABSTRACT The functional MRI (Magnetic Resonance Imaging), fMRI, is today a widespread tool to study and evaluate the brain from a functional point of view. The blood-oxygenation-level-dependent (BOLD) signal is currently used to detect the activation of brain regions with a stimulus application, e.g., visual or auditive. In a block design approach the stimuli (called paradigm in the fMRI scope) are designed to detect activated and non activated brain regions with maximized certainty. However, corrupting noise in MRI volumes acquisition, patient motion and the normal brain activity interference makes this detection a difficult task. The most used activation detection fMRI algorithm, here called SPM-GLM [1] uses a conventional statistical inference methodology based on the t-statistics In this paper we propose a new Bayesian approach, by modeling the data acquisition noise as additive white Gaussian noise (AWGN) and the activation indicators as binary unknowns that must be estimated. Monte Carlo tests using both methods have shown that the Bayesian method, here called SPM-MAP, outperforms the traditional one, here called SPM-GLM, for almost all conditions of noise and number of paradigm epochs tested
Breakthrough in purification of fossil pollen for dating of sediments by a new large-particle on-chip sorter
Particle sorting is a fundamental method in various fields of medical and biological research. However, existing sorting applications are not capable for high-throughput sorting of large-size (>100 micrometers) particles. Here, we present a novel on-chip sorting method using traveling vortices generated by on-demand microjet flows, which locally exceed laminar flow condition, allowing for high-throughput sorting (5 kilohertz) with a record-wide sorting area of 520 micrometers. Using an activation system based on fluorescence detection, the method successfully sorted 160-micrometer microbeads and purified fossil pollen (maximum dimension around 170 micrometers) from lake sediments. Radiocarbon dates of sorting-derived fossil pollen concentrates proved accurate, demonstrating the method’s ability to enhance building chronologies for paleoenvironmental records from sedimentary archives. The method is capable to cover urgent needs for high-throughput large-particle sorting in genomics, metabolomics, and regenerative medicine and opens up new opportunities for the use of pollen and other microfossils in geochronology, paleoecology, and paleoclimatology
CO adsorption on neutral iridium clusters
The adsorption of carbon monoxide on neutral iridium clusters in the size
range of n = 3 to 21 atoms is investigated with infrared multiple photon
dissociation spectroscopy. For each cluster size only a single v(CO) band is
present with frequencies in the range between 1962 cm-1 (n = 8) and 1985 cm-1
(n = 18) which can be attributed to an atop binding geometry. This behaviour is
compared to the CO binding geometries on clusters of other group 9 and 10
transition metals as well as to that on extended surfaces. The preference of Ir
for atop binding is rationalized by relativistic effects on the electronic
structure of the later 5d metals
- …