151 research outputs found

    Optimal phase space projection for noise reduction

    Get PDF
    In this communication we will re-examine the widely studied technique of phase space projection. By imposing a time domain constraint (TDC) on the residual noise, we deduce a more general version of the optimal projector, which includes those appearing in previous literature as subcases but does not assume the independence between the clean signal and the noise. As an application, we will apply this technique for noise reduction. Numerical results show that our algorithm has succeeded in augmenting the signal-to-noise ratio (SNR) for simulated data from the R\"ossler system and experimental speech record.Comment: Accepted version for PR

    Bayesian estimation of one-parameter qubit gates

    Full text link
    We address estimation of one-parameter unitary gates for qubit systems and seek for optimal probes and measurements. Single- and two-qubit probes are analyzed in details focusing on precision and stability of the estimation procedure. Bayesian inference is employed and compared with the ultimate quantum limits to precision, taking into account the biased nature of Bayes estimator in the non asymptotic regime. Besides, through the evaluation of the asymptotic a posteriori distribution for the gate parameter and the comparison with the results of Monte Carlo simulated experiments, we show that asymptotic optimality of Bayes estimator is actually achieved after a limited number of runs. The robustness of the estimation procedure against fluctuations of the measurement settings is investigated and the use of entanglement to improve the overall stability of the estimation scheme is also analyzed in some details.Comment: 10 pages, 5 figure

    Best network chirplet-chain: Near-optimal coherent detection of unmodeled gravitation wave chirps with a network of detectors

    Full text link
    The searches of impulsive gravitational waves (GW) in the data of the ground-based interferometers focus essentially on two types of waveforms: short unmodeled bursts and chirps from inspiralling compact binaries. There is room for other types of searches based on different models. Our objective is to fill this gap. More specifically, we are interested in GW chirps with an arbitrary phase/frequency vs. time evolution. These unmodeled GW chirps may be considered as the generic signature of orbiting/spinning sources. We expect quasi-periodic nature of the waveform to be preserved independent of the physics which governs the source motion. Several methods have been introduced to address the detection of unmodeled chirps using the data of a single detector. Those include the best chirplet chain (BCC) algorithm introduced by the authors. In the next years, several detectors will be in operation. The joint coherent analysis of GW by multiple detectors can improve the sight horizon, the estimation of the source location and the wave polarization angles. Here, we extend the BCC search to the multiple detector case. The method amounts to searching for salient paths in the combined time-frequency representation of two synthetic streams. The latter are time-series which combine the data from each detector linearly in such a way that all the GW signatures received are added constructively. We give a proof of principle for the full sky blind search in a simplified situation which shows that the joint estimation of the source sky location and chirp frequency is possible.Comment: 22 pages, revtex4, 6 figure

    Optimal waveform estimation for classical and quantum systems via time-symmetric smoothing

    Full text link
    Classical and quantum theories of time-symmetric smoothing, which can be used to optimally estimate waveforms in classical and quantum systems, are derived using a discrete-time approach, and the similarities between the two theories are emphasized. Application of the quantum theory to homodyne phase-locked loop design for phase estimation with narrowband squeezed optical beams is studied. The relation between the proposed theory and Aharonov et al.'s weak value theory is also explored.Comment: 13 pages, 5 figures, v2: changed the title to a more descriptive one, corrected a minor mistake in Sec. IV, accepted by Physical Review

    Complete model of a spherical gravitational wave detector with capacitive transducers. Calibration and sensitivity optimization

    Get PDF
    We report the results of a detailed numerical analysis of a real resonant spherical gravitational wave antenna operating with six resonant two-mode capacitive transducers read out by superconducting quantum interference devices (SQUID) amplifiers. We derive a set of equations to describe the electro-mechanical dynamics of the detector. The model takes into account the effect of all the noise sources present in each transducer chain: the thermal noise associated with the mechanical resonators, the thermal noise from the superconducting impedance matching transformer, the back-action noise and the additive current noise of the SQUID amplifier. Asymmetries in the detector signal-to-noise ratio and bandwidth, coming from considering the transducers not as point-like objects but as sensor with physically defined geometry and dimension, are also investigated. We calculate the sensitivity for an ultracryogenic, 30 ton, 2 meter in diameter, spherical detector with optimal and non-optimal impedance matching of the electrical read-out scheme to the mechanical modes. The results of the analysis is useful not only to optimize existing smaller mass spherical detector like MiniGrail, in Leiden, but also as a technological guideline for future massive detectors. Furthermore we calculate the antenna patterns when the sphere operates with one, three and six resonators. The sky coverage for two detectors based in The Netherlands and Brasil and operating in coincidence is also estimated. Finally, we describe and numerically verify a calibration and filtering procedure useful for diagnostic and detection purposes in analogy with existing resonant bar detectors.Comment: 23 pages, 20 figures, codes of the simulations are available on request by contacting the autho

    Fundamental quantum limits to waveform detection

    Full text link
    Ever since the inception of gravitational-wave detectors, limits imposed by quantum mechanics to the detection of time-varying signals have been a subject of intense research and debate. Drawing insights from quantum information theory, quantum detection theory, and quantum measurement theory, here we prove lower error bounds for waveform detection via a quantum system, settling the long-standing problem. In the case of optomechanical force detection, we derive analytic expressions for the bounds in some cases of interest and discuss how the limits can be approached using quantum control techniques.Comment: v1: first draft, 5 pages; v2: updated and extended, 5 pages + appendices, 2 figures; v3: 8 pages and 3 figure

    Fisher Information for Inverse Problems and Trace Class Operators

    Full text link
    This paper provides a mathematical framework for Fisher information analysis for inverse problems based on Gaussian noise on infinite-dimensional Hilbert space. The covariance operator for the Gaussian noise is assumed to be trace class, and the Jacobian of the forward operator Hilbert-Schmidt. We show that the appropriate space for defining the Fisher information is given by the Cameron-Martin space. This is mainly because the range space of the covariance operator always is strictly smaller than the Hilbert space. For the Fisher information to be well-defined, it is furthermore required that the range space of the Jacobian is contained in the Cameron-Martin space. In order for this condition to hold and for the Fisher information to be trace class, a sufficient condition is formulated based on the singular values of the Jacobian as well as of the eigenvalues of the covariance operator, together with some regularity assumptions regarding their relative rate of convergence. An explicit example is given regarding an electromagnetic inverse source problem with "external" spherically isotropic noise, as well as "internal" additive uncorrelated noise.Comment: Submitted to Journal of Mathematical Physic

    Statistical Communication Theory

    Get PDF
    Contains reports on six research projects.National Institutes of Health (Grant MH-04737-02

    Multiplet Effects in the Quasiparticle Band Structure of the f1f2f^1-f^2 Anderson Model

    Full text link
    In this paper, we examine the mean field electronic structure of the f1f2f^1-f^2 Anderson lattice model in a slave boson approximation, which should be useful in understanding the physics of correlated metals with more than one f electron per site such as uranium-based heavy fermion superconductors. We find that the multiplet structure of the f2f^2 ion acts to quench the crystal field splitting in the quasiparticle electronic structure. This is consistent with experimental observations in such metals as UPt3UPt_3.Comment: 9 pages, revtex, 3 uuencoded postscript figures attached at en

    Data analysis of gravitational-wave signals from spinning neutron stars. III. Detection statistics and computational requirements

    Full text link
    We develop the analytic and numerical tools for data analysis of the gravitational-wave signals from spinning neutron stars for ground-based laser interferometric detectors. We study in detail the statistical properties of the optimum functional that need to be calculated in order to detect the gravitational-wave signal from a spinning neutron star and estimate its parameters. We derive formulae for false alarm and detection probabilities both for the optimal and the suboptimal filters. We assess the computational requirements needed to do the signal search. We compare a number of criteria to build sufficiently accurate templates for our data analysis scheme. We verify the validity of our concepts and formulae by means of the Monte Carlo simulations. We present algorithms by which one can estimate the parameters of the continuous signals accurately.Comment: LaTeX, 45 pages, 13 figures, submitted to Phys. Rev.
    corecore