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In this communication we will reexamine the widely studied technique of phase-space projection. By
imposing a time-domain constraint on the residual noise, we deduce a more general version of the optimal
projector, which includes those appearing in previous literature as subcases but does not assume the indepen-
dence between the clean signal and the noise. As an application, we will apply this technique for noise
reduction. Numerical results show that our algorithm has succeeded in augmenting the signal-to-noise ratio for
simulated data from the Rössler system and experimental speech record.
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I. INTRODUCTION

Due to its simplicity in implementation and efficiency in
computation, noise reduction based on phase-space projec-
tion has been widely studied in previous literature. For ex-
ample, Broomhead and King �1� advocated that, in case of
white noise, via singular value decomposition �SVD�, one
could extract qualitative dynamics from experimental �noisy�
time series by removing the empirical orthogonal functions
�EOF’s� �2� of the trajectory matrix which correspond to the
noise components. To deal with the case of colored noise,
Allen and Smith �3� proposed a more general method, which
would statistically prewhiten colored noise by introducing a
transformation to the covariance matrix of noise. In general,
phase-space projection based on these methods would not
operate on the EOF’s that span the signal-plus-noise sub-
space; therefore, those operations could achieve a lowest
possible distortion for the clean signal, but at the price of a
highest possible residual noise level �4�. To obtain an optimal
trade-off between signal distortion and residual noise so as to
minimize the overall distortion, Ephraim and Trees proposed
the time-domain constraint �TDC� projector �4�, which im-
proves the performance of the existing methods by imposing
a constraint on the residual noise and which also includes the
existing methods as its subcases. As a generalization, some
authors also extended the TDC projector to the cases with
colored noise �5,6�.

Usually, these authors will make two assumptions con-
cerning the experimental time series. The first assumption is
that the time series is stationary and ergodic, and the second
one is that the noise components are independent of the clean
signal. In this communication we will reexamine the idea of
the TDC projector and deduce a more universal version. We
will also show that, with the first assumption, the second is
not necessary in general.

The remainder of this article will go as follows: In the
second section we will introduce the idea of the TDC pro-
jector. Based on the assumption that the noisy time series is
stationary and ergodic, we will obtain the optimal TDC pro-
jector for a trajectory matrix in the sense of minimizing sig-

nal distortion subject to a permissible noise level. In the third
section we will apply the optimal TDC projector to simulated
data from the Rössler system and experimental speech data.
We will also compare the performance of the projectors un-
der different TDC’s. Finally, a conclusion is available to
summarize the whole article.

II. MATHEMATICAL DEDUCTION

Given a noisy time series s= �si�i=1
M , we suppose that the

corresponding clean signal and the additive noise compo-
nents are d= �di�i=1

M and n= �ni�i=1
M , respectively; thus for each

noisy data point si, we have si=di+ni. In addition, we as-
sume �si�i=1

M is �weakly� stationary and ergodic so that its
expectation exists and its variance is finite, while its �auto�
covariances only depend on the time difference between the
subsets.

Following the definition in �1�, we could construct a �M
−m+1��m trajectory matrix S from �si�i=1

M by letting

S =�
s1 s2 ¯ sm

s2 s3 ¯ sm+1

] �

sM−m+1 sM−m+2 ¯ sM

�
�M−m+1��m

,

with M −m+1�m. Similarly, we could also obtain the cor-
responding trajectory matrices D and N for components
�di�i=1

M and �ni�i=1
M , respectively, and we have S=D+N.

For the purpose of noise reduction, we introduce a projec-
tion operator H on the trajectory matrix S of the noisy signal,
through which we could obtain a matrix Z=SH. We define
R0=Z−D=D�H−Im�+NH as the matrix of the residual sig-
nal, where the term D�H−Im� means signal distortion and the
term NH is residual noise. With the intention of data aug-
mentation, we would require the achievement of as small a
signal distortion as possible. Thus H=Im would be an intui-
tive choice. However, in situations such as speech commu-
nication, one would also require a permissible residual noise
level of the noisy signal, and the objective becomes to mini-
mize signal distortion subject to achieving a permissible re-
sidual noise level. Thus, if the initial data does not fulfil this
requirement, one has to reduce the initial noise level at the*Electronic address: enxdluo@eie.polyu.edu.hk
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price of introducing possible signal distortion. Similar to the
idea proposed in �4�, here we impose a TDC � on the term of
residual noise NH and treat R=D�H−Im�+�NH as the part
that requires a minimal distortion, where �2� �0, +�� is the
Lagrange multiplier determined by the permissible noise
level from the practical demand �see Eq. �33� of �4� and the
related discussions therein�. Thus our objective will be to
minimize the average energy �= �	i=1

M ri
2� /M of the data set

r= �ri�i=1
M that �approximately� corresponds to the matrix R. If

M �m, then

� 

1

�M − m + 1�m
tr�RTR� , �1�

where tr�·� means the trace of a square matrix and RT denotes
the transpose of the matrix R.

Discarding the constant term tr�DTD� in tr�RTR�, we have

tr�RTR� = tr�HT�D + �N�T�D + �N�H�

− 2tr�HT�D + �N�TD� . �2�

Taking m as a constant �7�, for the minimization problem, by
requiring �tr�RTR� /�H=0, we would have �D+�N�T�D
+�N�H− �D+�N�TD=0 according to the differential rules
in, for example, �9� �p. 472�. Therefore the optimal projector

Hmin = ��D + �N�T�D + �N��−1�D + �N�TD . �3�

With the noise components, �tr�RTR� /�H2=2�D+�N�T�D
+�N� is positive definite, which confirms that the extremum
taken at Hmin is a minimum. The corresponding minimal
value

trmin�RTR� = tr�DTD� − tr�DT�D + �N�Hmin� . �4�

But note that �D+�N�T is not a square matrix; its �ordinary�
inverse matrix usually is not defined, and thus we could not
cancel the terms of �D+�N�T in Eq. �3�.

Since S=D+N, we could also write Eq. �3� in the form of

Hmin = ��S + �� − 1�N�T�S + �� − 1�N��−1

� �S + �� − 1�N�T�S − N� . �5�

If we assume that the clean signal and the noise compo-
nents are independent, statistically we have DTN=NTD=0 as
M→�, hence STS=DTD+NTN, and Eq. �5� reduces to

Hmin = �STS + ��2 − 1�NTN�−1�STS − NTN� . �6�

Let CS and CN denote the covariance matrices of �si�i=1
M

and �ni�i=1
M , respectively, by assuming the expectation values

E�s�=E�n�=0. We have CS=STS / �M −m+1� and CN

=NTN / �M −m+1� as M→�. Thus Eq. �6� would be ex-
pressed as

Hmin = �CS + ��2 − 1�CN�−1�CS − CN� , �7�

which is consistent with the result in, for example, Eq. �3� of
�6�. But note that here we use �2 to substitute for the multi-
plier � in Eq. �3� of �6�. Also note that Hmin in our work is
the transpose of that in Eq. �3� of �6�; this is because the
trajectory matrices in our work are essentially the transpose
of those in �4–6�.

In many situations, although the noise components are
theoretically uncorrelated to the clean signal, numerical cal-
culations often indicate that the assumption DTN=NTD=0
does not hold strictly for finite data sets. As a more rigorous
form, Eq. �5� needs no independence assumption between
the noise components and the clean signal. Thus this expres-
sion is a further generalization of previous studies.

III. NUMERICAL RESULTS

We note that the trajectory matrices previously introduced
are all Hankel matrices. Take the trajectory matrix S of the
noisy signal as an example. Its entries satisfy S�i , j�=S�k , l�
if i+ j=k+ l, where S�i , j� denote the element of matrix S on
the ith row and jth column. However, the matrix Z=SH
usually will not be a Hankel matrix, and we may have many
ways to obtain the filtered �or projected� signal �zi�i=1

M . In our
work we use the method of secondary diagonal averaging to
extract signal from the matrix Z, which takes the average of
the elements along the secondary diagonals of matrix Z as
the filtered signal �zi�i=1

M �for details, see �8� �p. 24��, and thus
can form a new trajectory �Hankel� matrix ZH from �zi�i=1

M .
Golyandina et al. prove that this method is optimal among all
Hankelization procedures in the sense that the matrix differ-
ence ZH−Z has a minimal Frobenius norm ��8�, pp. 24 and
266�.

We adopt the signal-to-noise ratio RSN as the metric to
evaluate the performance of our noise reduction scheme,
which is defined �in dB� as �4,10�

RSN = 10 log10
�d�2

�z − d�2 , �8�

where �d�2=	i=1
M di

2 and �z−d�2=	i=1
M �zi−di�2.

We first apply our algorithm to a simulated data set, which
is generated from the x component of the Rössler system:

�ẋ = − �y + z� ,

ẏ = x + ay ,

ż = b + �x − c�z ,
 �9�

with parameters a=0.15, b=0.2, and c=10. The data are
evenly sampled for every 0.1 time units. We generate 10 000
data points and discard the first 1000 to avoid transitions. To
construct the trajectory matrices, we will set the window size
m=20.

Let �si�i=1
M and �di�i=1

M again denote the noisy and clean
signals, respectively. We consider adding three types of noise
contamination to the clean data. The first one is additive
white noise ��i�i=1

M �so that si=di+�i�, which follows the nor-
mal Gaussian distribution N�0,1�. The second one is additive
colored noise �	i�i=1

M �so that si=di+	i�, which, as an ex-
ample, is produced from a third-order autoregressive process
�PAR�3�� in the form of 	i=0.8	i−1−0.5	i−2+0.6	i−3+�i,
where the variable � follows the normal distribution N�0,1�.
The last one is multiplicative noise �
idi�i=1

M �so that si= �1
+
i�di�. As an example, we let 
i=	i

2, where �	i�i=1
M is from

the previous PAR�3� process; then, the noise component
�
idi�i=1

M is correlated to the clean data �di�i=1
M .
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By varying the magnitude of the introduced noise, we
have the initial noise level be 20 dB, 10 dB, and 0 dB, re-
spectively, and for each noise level, we will include ten dif-
ferent noise samples from the same process in calculation.
We will also study the performance of the projectors under
different constraints. As examples, we let TDC �=0, 0.5,
and 1 separately. TDC �=0 will lead to the least-squares
�LS� projector based on the SVD technique, which appeared
in, for example, �1–3�. We would need to specify the dimen-
sion of the signal-plus-noise subspace so as to group the
EOF’s and eigenvalues that correspond to the noisy signal
and remove the complementary noise subspace, which is es-

sentially related to the problem of choosing the embedding
dimension for embedding reconstruction from a scalar time
series �see the discussion in �10��. Thus here we adopt the
criterion of false nearest neighbor �11�, a method proposed
for selection of appropriate embedding dimensions. To apply
this criterion in calculations, we utilized the codes imple-
mented in the TISEAN package �12� and found that the proper
dimension size K of the signal-plus-noise subspace is 5 in
our cases. For �=1, we will obtain the well-known linear
minimum mean-squared-error �LMMSE� projector �detailed
introductions are available in, e.g., �13��. After all of the
calculations, we finally list the performance of these TDC

TABLE I. Performance of TDC projectors for the Rössler system �in unit of dB�.

TDC � Additive white noise Additive colored noise Multiplicative noise

20→25.50±0.09 20→20.92±0.05 20→21.11±0.10

0.0 10→15.95±0.11 10→10.89±0.04 10→11.14±0.09

0→5.88±0.06 0→0.87±0.04 0→1.16±0.10

20→25.80±0.10 20→21.07±0.05 20→23.23±0.24

0.5 10→17.74±0.15 10→11.64±0.06 10→14.42±0.23

0→9.71±0.10 0→3.12±0.08 0→6.97±0.22

20→26.27±0.11 20→21.17±0.05 20→24.44±0.34

1.0 10→18.29±0.16 10→11.89±0.07 10→16.12±0.32

0→10.10±0.09 0→4.15±0.09 0→9.56±0.33

FIG. 1. �a� Time series from the Rössler system contaminated with 0 dB additive white noise. �b�, �c�, and �d� Augmented time series by
TDC projectors with �=0, 0.5, and 1 separately.
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projectors in Table I. For better comprehension of the pre-
sented results, we provide the wave forms of all of the data
listed in Table I as supplementary material �14�. To keep our
presentation concise, here we only take out the raw data
contaminated with 0 dB additive white noise as an example
and depict its wave form of in panel �a� of Fig. 1. For com-
parison, we also plot the augmented data with TDC=0, 0.5,
and 1 in panels �b�, �c�, and �d�, whose mean noise levels are
5.88, 9.71, and 10.10 dB correspondingly.

From Table I, we see that for the Rössler system, our
algorithm works for all of three types of contamination. But
the data augmentation for additive colored noise is not as
obvious as those for additive white noise and multiplicative
noise �the possible explanation is explored in the Appendix�.
We also see that, in general, the LMMSE projector has better
performance than that of the LS projector in the sense that it
can achieve a better SNR as defined in Eq. �8�.

We then apply our algorithm to a very noisy speech
�vowel� data �with 8000 data points�, which is sampled at
44 kHz and quantized to 16 bits. In this case we only know
the background noise measured in the period without the
signal. It would be preferred if we could produce a set of
samples that mimic the behavior of the underlying noise.
Here we adopt the pseudoperiodic surrogate �PPS� algorithm
�15� to generate nine surrogates based on the original back-
ground noise. With these data sets, the initial signal-to-noise
ratio �SNR� of the speech data is estimated to be
−0.32±0.18 dB via Eq. �8�. To introduce phase-space projec-

tion to the speech data, we let the window size m=30 and set
the dimension size of the signal-plus-noise subspace to be
K=8, and then apply the TDC projectors H to its trajectory
matrix. For the LS projector ��=0�, the augmented RSN

=4.36±0.41 dB. While for TDC �=0.5 and 1, the corre-
sponding SNR’s increase to 6.28±0.61 dB and
6.97±0.66 dB, respectively. As an illustration, we plot the
wave forms of the original speech record and three projected
data under different TDC’s in Fig. 2, from which we can see
that the LMMSE projector ��=1� would lead to a smoother
speech wave form �panel �d�� than that of the LS projector
�panel �b��. Although the speech data output from the
LMMSE projector has lower �signal� magnitudes than those
of the speech record from the LS projector, it is still pre-
ferred to its rival in speech communication since a smoother
data will usually bring better communication quality.

IV. CONCLUSION

In this communication we reexamined the noise reduction
technique based on phase-space projection. By imposing a
constraint on the residual noise, we deduced the optimal
time-domain constrained projector in the sense of minimiz-
ing the signal distortion subject to a permissible noise level.
We also showed that, in general, we need not assume inde-
pendence between clean signal and noise components as was
previously done. This viewpoint was confirmed by our nu-

FIG. 2. �a� Original speech record. �b�, �c�, and �d� Speech data output from TDC projectors with �=0, 0.5, and 1 separately.
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merical results �see the third column of the calculation re-
sults in Table I�.
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APPENDIX

Here let us examine the metric of signal-to-noise ratio in
more detail. According to the definition in Eq. �8�, RSN
=10 log10�d�2 / �z−d�2, where �d�2=	i=1

M di
2 and �z−d�2

=	i=1
M �zi−di�2. Note that �d�2=tr�DTD� /m and �z−d�2

=tr��Z−D�T�Z−D�� /m as M→�; thus,

RSN = 10 log10 tr�DTD� − 10 log10 tr��Z − D�T�Z − D�� .

Since Z=SH, we have tr��Z−D�T�Z−D��=tr�HTSTSH�
−2 tr�DTSH�+tr�DTD�. For the case that the noise and the
clean signal are independent, substituting the optimal projec-
tor Hmin into the expression, it can be shown that trmin��Z
−D�T�Z−D��=tr�DTD�−tr�HminD

TD�. For simplicity, we as-
sume the expectation values E�d�=E�n�=0; then, CD

=DTD / �M −m+1� and CN=NTN / �M −m+1� as M→�,
where CD and CN are the covariance matrix of the clean
signal and the noise, respectively, and Hmin can be expressed
in the form of Eq. �7� or, equivalently, Hmin= �CD

+�2CN�−1CD. Therefore, in this case, we have trmin��Z
−D�T�Z−D��=tr�CD�−tr�HminCD�, and thus the maximal
SNR can be expressed by

RSN max = 10 log10 tr�CD� − 10 log10�tr�CD�

− tr��CD + �2CN�−1CD
2 �� . �A1�

Through the SVD technique �1�, CD can be written as
CD=VD�DVD

T , where VD is the normalized eigenvector ma-
trix of CD and �D is a diagonal matrix whose nonzero ele-
ments are the eigenvalues of CD �in fact VD

T VD=Im and
CDVD=VD�D�. Similarly, we have CN=VN�NVN

T . Let VN
=VDPDN �for better comprehension, PDN can be thought as a
kind of projection from VN on VD�; then, CN
=VDPDN�NPDN

T VD
T . Substituting it into Eq. �10�, we have

RSN max = 10 log10 tr��D� − 10 log10�tr��D�

− tr���D + �2PDN�NPDN
T �−1�D

2 �� .

If the noise components are white, we have �N=�2Im
�with � being the standard deviation of the noise process�
and VN=VD �i.e., PDN=Im� �3�. However, for the case of
colored noise, usually PDN�Im. Instead it is possible that the
absolute values of the elements in PDN are relatively small.
Thus, even for the same clean signal �di�i

M, the RSN max per-
formance of the colored noise might be much worse than that
of the white noise. This fact might explain the observation
that the results in Table I are not that promising for additive
colored noise.
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