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A. WORK COMPLETED

1. METHODS OF DETERMINING COEFFICIENTS FOR OPTIMUM SYSTEMS

This study has been completed by H. C. Salwen. In May 1962, he submitted the

results to the Department of Electrical Engineering, M.I.T., as a thesis in partial ful-

fillment of the requirements for degree of Master of Science.

M. Schetzen

2. SYNTHESIS OF SEVERAL SETS OF ORTHOGONAL FUNCTIONS

The present study has been completed by R. W. Witte. It was submitted as a thesis

in partial fulfillment of the requirements for the degree of Master of Science, Depart-

ment of Electrical Engineering, M.I.T., May 1962.

M. Schetzen

3. THRESHOLD STUDY OF PHASE-LOCKED LOOPS

The present study has been completed by M. Austin and the results have been pre-

sented to the Department of Electrical Engineering, M.I.T., as a thesis in partial ful-

fillment of the requirements for the degree of Master of Science.

H. L. Van Trees, Jr.

B. A TWO-STATE MODULATION SYSTEM

It is well known that two-state signals have advantages over continuous signals with

respect to processing in electronic circuits. The former are much less sensitive to

many variations in the parameters of the electronic devices because only the signal zero

crossings are important. In particular, the linearity of the devices is of no concern.

*This work was supported in part by the National Institutes of Health (Grant

MH-04737-02).
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Also, high power level two-state signals can be handled with very high efficiency, since

all of the active circuit elements can be operated in a switching mode with a consequent

low power consumption.

Thus one can envision the usefulness of a simple method for converting a continuous

signal into a two-state form in such a manner that the original signal can be recovered

easily. Existing PCM and FM systems perform the conversion of continuous signals

into two-state signals and vice versa; however, they are rather complex systems. The

Delta modulation system achieves similar results with simpler equipment. This report

describes a very simple modulation system that has, for particular applications, certain

advantages over the above-mentioned systems.

The basic modulation system is depicted in Fig. XIII-1. The network N in the feed-

back loop can take on different forms that depend upon the desired modulator character-

istics. In both the analytical and experimental studies, thus far, most of our attention

has been devoted to the form of N consisting of a delay line followed by an integrator

as shown in Fig. XIII-2. Analysis of the modulation system shows that with this type

of feedback network the system oscillates in such a manner that

(a) With no signal input the output y(t) is a square wave with a period T o controlled

by the delay time Td and the integrator time constant RC of the feedback network, and

by the hysteresis width 26 of the forward path.

(b) For any constant input the output is a rectangular wave with a period greater

than T o and a duty cycle that is such that the average value of y(t) is very nearly equal

SIGNAL INPUT OUTPUT y(t)

Fig. XIII-1. Diagram of the modulation system.
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I I

b C

C DELAY Td

I I

L----- -----

Fig. XIII-2. One form of the feedback network.

to the input signal.

(c) For slowly varying input signals S(t) the output exhibits a combination of fre-

quency and pulse duration modulation in such a manner that S(t) can be recovered from

the modulated signal by the simple operation of lowpass filtering.

The present system shares with Delta modulation the very simple method of demod-

ulation. However, the present system does not exhibit a threshold effect or quantization

noise in spite of the finite width of the hysteresis in the forward path. This result is

to be expected because the Delta modulation output is quantized both in amplitude and

time, whereas the output of the present system is quantized in amplitude only. On the

other hand, the price that the present system pays for its freedom from quantization

noise is that it is not useful in time -multiplexing systems.

The analysis of this system and some of its applications that are now under investi-

gation will be presented in future reports.

A. G. Bose

C. DESIGN OF FILTERS FOR NON MEAN-SQUARE-ERROR PERFORMANCE

CRITERIA BY MEANS OF A CONTINUOUS ADJUSTMENT PROCEDURE

I. Introduction

The problem considered in this report is that of designing a system containing k

variable parameters, x 1 , x 2 , ... , xk; the input to the system is a sample function v(t)

from a stationary ergodic process and the desired output for the system is a sample

function d(t) from a related stationary ergodic process. We shall not specify any rela-

tion between v(t) and d(t). This allows us to consider simultaneously the model problem

[d(t) is the output of some given system whose input is v(t)]; the prediction problem

(d(t) = v(t+a), a > 0); and the filter problem (v(t) represents some corrupted form of

d(t+a), a being either > 0 or < 0 and the corruption not being limited to additive noise).
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For convenience, the k-tuple of parameters (x l ,1 , . ., xk) will be denoted by the

k-dimensional vector x and the output of the filter (or model or predictor) will be

denoted by q (t) to indicate its dependence on x. What we wish to find is the parameter

setting x for which qx(t) most closely resembles d(t) is some prescribed sense. We

measure this performance by attempting to minimize

M(x) = E{W[dt-qP t] }

in which W is a non-negative weighting function on the error, e(t) = d(t) - qx(t). Nor-

mally W(e) is taken to be (e) 2 for ease of analytical treatment. Here we require only

that W be strictly convex; subject to this restriction, it can be chosen to best express

the purpose of the application. This problem will not admit of an easy analytic solution

for a general convex function W, and thus we resort to an adjustment procedure; that is,

we start the system with some initial parameter setting and observe how the perfor-

mance of the system changes with certain perturbations of the k parameters x 1 , . . . , xk.
This information is then fed back to make changes in the parameter setting. We have

already described a method in which the parameters were perturbed sequentially and

the adjustments in setting were made at discrete instants of time. In the method

described here, simultaneous perturbations of the parameters are made and the param-

eter setting is continuously adjusted. The present continuous adjustment method

described warrants consideration in that it can be realized with only simple analog com-

puting facilities, while the discrete adjustment procedure requires digital computing

equipment.

An adjustment method is of no use unless it can be guaranteed a priori that the

parameter setting x will converge to the optimum setting. After describing the adjust-

ment procedure, we shall state a set of assumptions concerning the processes involved

and show that these guarantee convergence of x to the optimum setting in the mean-

square sense.

Before describing the adjustment process, we introduce the necessary notation. The
k

Euclidean inner product E xiYi is denoted by (x,,y), and the k-dimensional Euclidean
i=l

norm byx = +[(x,x)] / 2 A unit setting of the i parameter, xi, and zero setting
of the other k - 1 parameters will be denoted by ei, i = 1, 2, . .. , k. For notational sim-

plicity, we shall denote

Yx(t) = W[d(t)-qx(t)] (1)

and also denote by 6 the optimum parameter setting; that is, the setting x that minimizes

M(x) = E{Yx, t. (2)
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2. Description of the Adjustment Procedure and Conditions for Convergence

We shall consider only the design of filters (or predictors or models) of the form

shown in Fig. XIII-3. This form is general in that if a sufficiently large number of fi(t)

are chosen in a proper systematic manner, the filter can approximate arbitrarily closely

any nonlinear operator whose output depends only negligibly on the remote past. Fur-

thermore, if a good filter is already available, it may be incorporated into the filter

of Fig. XIII-3 by letting the signal fl(t) be the output of the given filter. For the param-

eter setting x 1 = 1, x 2 = x 3 = ... = xk = 0, the over-all filter reduces to this original

filter, and hence its performance must be at least as good as that of the original filter.

The continuous adjustment procedure to be considered is shown in Fig. XIII-4. This

operational block diagram provides the clearest and most concise description of the

adjustment procedure. The adjustment mechanism requires only integrators, time-

variant gains, and W error-weighting transducers. Note that the adjustment procedure

continuously makes simultaneous measurements of difference approximations for all k

components of the gradient. The measurement of the ith such component is given by

k

Yi(t) = Y i- (t)- Y i(t) = W d(t) - xi(t) fi(t) - c(t) fit)

i=l

k

- W d(t) - xi(t) fi(t) + c(t) fi(t) . (3)

i=l

The adjustment of the ith parameter is then governed by

x (t) = xi(1) - a(T) Yi( ) dT. (4)

Note that the measurement Y. is not the difference approximation itself but rather
c(t) i, t th

a random variable whose mean is a difference approximation to the i component of

the gradient; that is, the difference approximation would be obtained by taking a long
1

time average of c Yi(t) for fixed x and c.

This procedure is thus essentially a gradient-seeking procedure carried out in the

presence of random fluctuations. In making the adjustment we are attemption to measure

the direction of steepest descent and change the parameter setting in that direction.

Because the adjustment process is essentially a gradient-seeking method, its usefulness

is limited to systems and error-weighting functions for which M(x) possesses a unique

minimum. To be more precise, we require

(grad M(z) ,x-) > K IIx-112 K > 0 (5)

-g a M l)z=x'- 0 11Eo 1 1- 0
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CONTINUOUS
BOUNDED

v(t) OPERATIONS
ON v (-)

rTt

(LINEAR OR
NONLINEAR)

Fig. XIII-3. Form of the filter (or predictor or model) to be designed.

xl(t) = x (I)

x 2(t) = x ( )W t

c (T)

c(T) Y (T) d T

C (T)

e :  -fl (t)[x(t) +c(t)]-f 2 (t) x 2 (t) +d(t)

e- = -fl(t) [x (t) - c(t)] -f 2 (t) x 2 (t) + d(t)

e 2 =-fl(t) xl(t) - f 2 (t) [x 2 (t) + C2 (t)] + d(t)

e2  = -fl(t) x - f2(t) (t) x2 (t)-c 2(t)] + d (t)

Fig. XIII-4. Diagram of the continuous adjustment procedure for two
parameters, xl and x 2.
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and

aM(x)
- -Q, Q <o. (6)

ax
i

Inequality (5) simply means that, at any setting x, the component of the gradient in the

direction of the optimum setting is always less than -Ko times the distance to the setting.

Inequality (6) is self-explanatory. Inequality (5) prevents the adjustment from "sticking,"

while inequality (6) prevents sustained oscillations.

We wish to be able to state sufficient conditions directly on the procedure and proc-

esses involved which will guarantee convergence. The following are sufficient.

On the adjustment procedure we require:

(a) Let a(t) and c(t) be bounded, continuous, positive functions with the properties

a(t) dt = c, a(t) a( dt < oc, and a(t) c 4 (t) dt < o.
1 1 1

(b) The parameter setting x is constrained to a bounded, closed, convex set X,

but is free to be varied inside X. (A set X is convex if x 1 E X, x 2 E X implies

ax 1 + (l-a) x 2 E X for 0 < a < 1.)

The following restrictions are sufficient to impose on the function W and the proc-

esses involved:

(c) The signals v(t) and d(t) are the outputs of stationary ergodic sources and are

uniformly bounded in absolute magnitude for all t with probability one.

(d) The signals fi(t), i = 1, 2, ... , k, are obtained by bounded time-invariant opera-

tions on v(t) (and hence are also uniformly bounded in magnitude).

(e) The correlation coefficient between any fi, t and any linear combination of the

remaining fj, t is different from plus or minus one; i.e., for any set of Aij

fi - fi j= j~i
E off} < 1 i = 1,2, ... ,k

E - r A..f.
13J

(f) The function W(e) is a polynomial of finite degree. Moreover, W(e) is to be

"strictly convex" in the following sense: There exists an E greater than zero so that,

for arbitrary a and b in the domain of W

W[aa+(1-a)b] < aW[a] + (1-a) W[b] - Ea(a-b) 2  0 < a < 1/2

(g) Consider the random processes d(t) and fi(t), i = 1, 2, ... , k. Let
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F l [d(T 1 ), f(T 1).. fk(Tl)] and F2[d(T2 ), fl(T 2 ),' .

fk(T2)] be any bounded continuous functionals of d(t) and the

fi(t) for T 1 - t and t + a - T 2 < t + a + T, T fixed.

We then require for large a

RF F = E(Fl 1)(F 2) < 2F -F
1  a 2

in which K < 0c and is independent of F l and F 2.
Before proceeding to the statements concerning the convergence of the adjustment

procedure, let us comment on the nature of these restrictions. Restrictions (c)-(e)

impose no serious limitation on our physical situation. Restriction (c) will surely be

satisfied, since the output of any physical source is always uniformly bounded. Restric-

tion (d) requires only that the filter be stable. Restriction (e) only requires that all the

fi(t) differ from one another in the prescribed sense. The convexity requirement of (f)

imposes the only serious limitation on the method. The polynomial restriction is no

real limitation in addition to the convexity restriction, since any convex function is con-

tinuous and hence may be approximated arbitrarily closely over a finite range by a

finite polynomial. Since the data are bounded, the error will always lie in a finite range.

It should be noted that the inequality of restriction (f) is slightly stronger than the usual

definition of strict convexity; in fact it requires that the polynomial W contain a nonzero

quadratic term. By slightly strengthening restriction (e), we can weaken the inequality

of (f) by requiring that it hold only for either a or b bounded away from zero. This

will include any function W for which

0 < M 1 < W"(e) 4 M 2  for 0 <E e K<oo

which includes W(e) = Ielp , p > 1, and thus closely corresponds with the usual definition

of strict convexity. 3

To appreciate how inclusive the class of processes that satisfy restriction (g) is,

refer to Fig. XIII-5. The quantity F 2 is obtained by an operation upon the data in the

interval t + a < T < t + a + T. Now consider trying to predict F 2 by using some func-

tional, F 1 , on the data for T < t. Note that there is a complete separation of a seconds

between the data used for F 1 and that used for F 2 . Now the best linear prediction of

F 2 given F 1 is

R
.IFFF

2 - F2 2 (F -F 1)
a
F 1
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and the mean-square error in this prediction is

1 '2 2 2
2 (F -F - RF F 2

F 1

Our requirement on RF F is thus a restriction on the rate of increase of the prediction

error of the functional F 2 with increasing prediction time. In particular, for large pre-

diction time we require that the prediction error approach its asymptotic value at a rate

of 1/a4. Note that if d and the f T' t + a < T < t + a + T are statistically indepen-
T i, T O O

dent of d and the f. , T < t, then RF = 0 for a > a and the inequality is satisfied.
T i,T 1Fl 2 o

Restriction (e) will not, in general, be satisfied for a periodic process. Also, the rate

f1 (-r)

d (r)

i= 1,2, .- ,k

rt It+a I

t+ a

t +a +T

t+a+T

riT

F2 [d (r) , f (r), , f k (r)]
t + a -r t + a+T

I F2
,- 2  F -F

2 2 2

PREDICTION ERROR

"ACCEPTABLE" PREDICTION ERROR

PREDICTION TIME

Fig. XIII-5. Explanation of restriction (e).
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in restriction (e) could be reduced from 1/a 2 to 1/a1+ , E > 0, although this would affect

the rate of convergence given in Statement 2 below.

Having made the restrictions, we can now make the following statements concerning

the convergence of the parameter setting, xt, to the optimum setting 0. The implication

of these statements for the physical adjustment procedure is clear.

STATEMENT 1: Restrictions (a)-(g) imply the convergence of IIxt-_! to zero in the

mean-square sense for all allowable choices of initial parameter setting; that is,

limE fxt 2} = 0 for all x(1) E X.

We now set a(t) = a/ta and c(t) = c/tv for t > 1. In order to satisfy restriction (a) we

require 1/2 < a < 1 and y > 1 - a/4. If a = 1, we also require a > 1/4Ko , in which

K is defined as in section 2. Under these conditions we can make the following state-

ment.

STATEMENT 2: Restrictions (a)-(g) and the choice a = 1, -y > 1/4 imply

E{t-I2} K , K < c for all x(1) E X.

Moreover, no faster rate of convergence can be obtained which applies to all processes

and error-weighting functions satisfying restrictions (a)-(g).

Relative to Statement 2, it should be pointed out that the given rate of convergence

is the rate at which the parameter setting - t approaches the optimum setting, 0, and

not the rate at which the average performance, M(xt), approaches the optimum, M(2).

However, since M(x) is continuous, convergence of xt to 0 insures the convergence of

M(xt) to M(0). Note that it is not only the asymptotic rate of convergence which is

important (1 in Statement 2), but also the initial convergence of x t to a region near 0.

This initial convergence depends critically on the adjustment coefficients a, c, a, and y.

Some studies4, 5 have been made in which the adjustment of these coefficients to obtain

a rapid initial convergence is considered.

[Note: Proofs of Statements 1 and 2 will be given in Quarterly Progress Report

No. 67, October 15, 1962.]

3. SIMPLE EXAMPLE

In order to give the reader a better feeling for restrictions (c)-(g), we present a

simple example. We start with a familiar representation for a process and state con-

ditions on the representation that will guarantee the satisfaction of restrictions (c)-(e)

and (g).

The example is the unit prediction of a process v(t), which is generated in the
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following manner. Let white noise, n(t), be passed through a linear device whose

impulse response has the properties

Ih (t) -< C' 0 -< t -< T
0 o o

ho(t) - 0O t < 0, t > T o .

Note that the output of this linear device could represent "shot noise" for a suitable

choice of h (t). The output of this linear device is passed through a limiter whose upper

and lower limits are plus and minus L, respectively. Denote the output of the limiter

by w(t); the process v(t) is then generated by passing w(t) through another linear device

with impulse response h(t).

0v(t) = h(l) w(t-T)dT (7)

d(t) = v(t+l) (unit prediction). (8)

The predictor will be a linear one of the form

k

(t) = qx ) = xif i(t) (9)

i=l

in which

f.(t) = h!(T) v(t-T) dT

10

or, if we let hi (t ) denote the impulse response obtained by cascading (convolving) hi(t)

and h(t), then

f.(t) = h.(T) w(t-T) dT,. (10)

Now our assumptions on ho(t) and the limiter imply

(a) wt I < L with probability one

wt and wt+ T are statistically independent for T > To.

We also make the assumptions:

197



(XIII. STATISTICAL COMMUNICATION THEORY)

0

(b) Ih(t) < C < o

Co/t3

t <0

0 < t< 1

t> 1

t <0

0 -t < 1

t> 1

i= 1,2,...,k.

(c) The hi(t) are linearly independent in the sense that for any set of numbers Ai

k

hi(T1 )  A ijhj(T2) Rww(T 2-T1) dTdT2 < 0 hi(T) hi(T2 )

j i

0 0 [A fj 1 1 Af (2)

0
RWW(T

2 -T 1 ) dT 1 dT 2

RWW(T
2 -T 1 ) dTldT2

for i= 1,2, ... , k, and R w(T 1 -T 2 ) = Ewt+T wt+T
We now wish to show that the assumptions (a)-(c) above guarantee the satisfaction of

restrictions (c)-(e) and (g). Both (c) and (d) follow directly from assumption (a) and

from the fact that assumption (b) implies

0 h(t)I dt < 2C
i = 1, 2, . . .,k.

Assumption (c) is merely restriction (e) rephrased in terms of the predictor impulse

responses.

We now turn to the problem of showing that restriction (g) is satisfied. In a future

report (Quarterly Progress Report No. 67) it will be shown that in establishing State-

ments 1 and 2 we shall need to consider only functional quantities of the form

F l ,t = (xt) r-1 Yt

F2,t+a (ft+a) p (dtta)s.

(11)

(12)

In the multidimensional case F1 and F2 are of the same form but contain all of the fi(t)

and all of the components of x(t). We shall now demonstrate that restriction (g) is satis-

fied for the quantities given by Eqs. 11 and 12; the multidimensional case may be

handled in the same manner, the added difficulty being only one of notation. Using

Eqs. 7, 8, and 9, we may express F 2 as

198

S0 Ih (t)l dt < 2C i

0

Ihi(t) < C i < 0o

Ci/t
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F 2 - F 00

[ T '

... hl 1)  ... hl(T ) h(T )

0 p+dT

.-T ... T l p+s
p+s 1 p+s

in which

= w(t+a-T1) ... w(t+a-T p) w(t+a+1-T+ )1 p p1
... " w(t+a+1-T+ ).

p'rs

= F 1,t(F2,t+ a-F)

= ... 0 h (T 1 ) ... hl(Tp) h(Tp+l) ... h(Tp+s)

F , [ 1.
Tp+s 1 . .Tp+s

(15)
d1. .dTp+s

The multiple integral of this equation can be broken up into p + s similar integrals, the

first of which is

... hl( ) ... h (T p ) h(Tp+ 1)p1

... h(Tp+s) FltL T1...Tp+s (16)- 1  Tp d . . . dT p
1 pps

F1,t depends on w( ) only for T < t. From assumption (a) and Eq. 14 we see that Fit

in Eq. 16 are therefore statistically independent for T 1 < a - To,
To,

and thus

71 < a - T

Furthermore, IFl,t(1 - ) , by assumption, is bounded with probability

K 8 < oo. Therefore

one, say, by K 8,

1iK 8 ,aa-T

00
K 8  a-T

0

So0
.. hl(Tp) h(Tp+ 1 )I ... h(Tp+s) I dT1 ... d p+ s... h 1( l)1

jh 1( 1 ) dLS hl(T) I dTj [) th(T) dT

p-1

199

... h(T + s )p+s

(13)

1 .. p+s

Thus

(14)

01 1

Now

and

F ,t(f-Z ) = 0

(17)

(F 1,t-1 )(F 2,t+a-F2)

T 1 ' * * Tp+
s
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and, from assumption (b),

4K
Ill < K 9  1 or Il- 2< for a > 2T .

(a-T 0 ) a

The other terms in Eq. 15 can be treated in exactly the same manner, and yield the

desired inequality for F2 and Fl .

4. Conclusions

The adjustment method described in this report for filter, predictor, or model design

has one distinct advantage over correlation methods; it is applicable to the rather broad

class of convex error-weighting functions. It should be pointed out that this advantage

disappears when it is known a priori that the processes v(t) and d(t) are jointly Gaussian;

in this situation the filter that minimizes the mean-square error also minimizes the

mean of any convex weighting function of the error.6 A second advantage of the method

is that it requires only a knowledge that the processes satisfy certain liberal restrictions

and does not require detailed information of the process statistics.

It is true that the adjustment method described here does require the availability

of the signals v(t) and d(t) for a reasonably long interval of time. However, successful

application of correlation methods requires detailed information of the process statistics,
or alternatively, long intervals of data from which to measure the necessary statistics.

If the adjustment procedure is used to design a filter for use at the receiving end of a

communication channel, a sample function, d(t), which is known at the receiver, must

be sent over the channel in order to carry out the adjustment procedure.

The author wishes to express his deep appreciation to V. R. Algazi, Gian Carlo Rota,
and H. L. Van Trees, Jr. for helpful commentary and suggestions.

D. J. Sakrison
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D. NONLINEAR NO-MEMORY FILTERS OF A PRESCRIBED FORM

In this report we present some results concerning the relation between the character-

istics of the message and of the noise when the filter has a specified form. We are inter-

ested in the problem of mean-square filtering for the class of no-memory filters, as

shown in Fig. XIII-6.

We consider the case

x(t) = m(t) + n(t)

z(t) = m(t)

in which m(t), the message, and n(t), the noise, are statistically independent. It is

known that the output of the optimum mean-square filter is the conditional mean of the

message, given the input

y(t) = E[mt/mt+nt], (1)

in which mt and nt are the amplitude random variables at time t of the message and the

noise, respectively.

If the input and the desired output are stationary, then the filter is time-invariant

and the output y(t) can be labelled g(x).

Equation 1 becomes

g(x) = +
00

u Pm/m+n(u/x) du.

INPUT x (t) OUTPUT y(t)

ERROR e(t)

DESIRED OUTPUT z (t)

Fig. XIII-6. Filter operation considered.
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By the use of Bayes' rule and by taking into account the fact that the message and the
noise are statistically independent, g(x) can be written in the form

+00
-ao

S+0000

+co
r(x) =+

-00

q(x) +00

-oo

upn(x-u) pm(u) du

Pn(x-v) Pm(v) dv

u pn(x-u) p m(u) du

Pn(x-v) Pm(v) dv .

Hence, Eq. 3 can be written

r(x)
g(x) = (x). (4)

Note that q(x) = pm+n(x).

We shall now express r(x) and g(x) in terms of the characteristic functions P (t) and

Pm(t). We use the definitions:

p(u) = +00
-00

P(t) = p(
-00

P(t) e - jtu dt

) e jtu du .

Writing r(x) in terms of Pm(t) and P (t), we obtain

r(x) = +00  +00

-00 -00

Pn(t) -jt(x-u) dt du
mu) 27e

P (t) e - j t x dt +00
-oo

u pr(u) e jtu du

r(x) = -
--00

1
q(x) -=

-00

dP m (t) -jtx

Pn(t) d(jt) e

P (t) P (t) e- j t x dt .n m
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Hence

+ dP(t) e-jtx dt
Pn(t) d(jt)(6)

g(x) = (6)

Pn(t) P(t) ejtx dt

In the following discussion we shall use expressions (3) and (6) that we have just

obtained for g(x).

1. The Optimum Nonlinear No-Memory Filter Reduced to an Attenuator

If the optimum filter is g(x) = ax, the input signal is just attenuated, and Eq. 4

becomes ax q(x) = r(x). By equating the Fourier transforms of both sides, we have, in

terms of the characteristic functions,

a d dPm(t)
j dt [P (t ) P ( t ) ] = Pn (t ) d(jt)

and

dP m (t) dP n (t)dtm P (t ) [ 1 - a ] = aP(t) dtn (7)
dt n m dt

This linear differential equation (7) relating the characteristic functions of message

and noise was obtained and discussed by Balakrishnan, 1 who used a different derivation.

The solution of (7) is

Pm(t) = [Pn(t)] a/-a (8)

If Pn(t) is given, Eq. 8 establishes the corresponding Pm(t) so that the attenuator

with attenuation constant a is optimum.
a

If P (t) is a characteristic function, it is necessary that -a 0, hence 0 < a 1.
m 1-a

This condition can be shown by using the following properties of characteristic functions

P(0) = 1

1P(t) 1i< 1 for t # 0 (9)

P(-t) P *(t)

in which P (t) is the complex conjugate of P(t).

We proceed with the discussion of Eq. 8 by looking for the classes of messages and

noises which satisfy Eq. 8, and for which, independently of the noise level, the optimum

filter is an attenuator. The solutions of Eq. 8 which satisfy this new condition are more

significant from an engineering point of view.

If the noise level is changed,
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pn(u )  I Pn
c>,O

Pn(t 1) Pn(ct 1)

We assume that Eq. 8 is satisfied for a given noise and that, for c = 1,

k
P (t) = [P (t )] k a > 0.m n 1-a

If the noise level is changed and the message stays unchanged, and if the optimum filter

is still an attenuator, we have

k2
Pm(t ) [P (ct )] k2 > 0.

Hence

Pn(t) [Pn(ctl)] k , (10)

k
in which k k > 0. Equation 10 expresses a relation between c and k which should

2
hold for all t.

By differentiation, we obtain

kP'(ct) [Pn(ct)]k- 1t1 dc + [Pn(ct )]k In [Pn(ct)] dk 0,

in which P' (x) indicates differentiation with respect to the argument, x.n
Letting ct 1 = t, we have

k d Pn(t) In Pn(t) ,4
-- A,cdk P' (t) t A
n

in which A is independent of t.

If k and c are both positive and real, A is real. We have, therefore, an equation

for P (t):

P n(t) In P n(t)
= A. (11)P'(t) t

n

Let

P (t) = p(t) ej 0(t)

In P (t) = In p(t) + je(t)

Equation 11 becomes

In p(t) + je(t) = At
+ jO'(t)
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or

p'(t)
In p(t) + jO(t)= At ) + jAtO'(t).

P (t)

Thus

p'(t)
In p(t) = At

p(t)
(12)

0(t) = AtO'(t),

which can be solved to give

10(t) I = D It /A

p(t) e - B t I / A  B O.

Here, we have used conditions (9). By another use of conditions (9) the solutions that

are possible characteristic functions reduce to

P (t) = 0 < k < 2 (13a)

P (t) e - B it ejDt (13b)

in which B is real and positive and D is real. The condition 0 < k < 2 for this type of

characteristic function has been given by Schetzen. 2

The characteristic functions represented by (13a) correspond to density functions

with zero mean, among which are the Gaussian and Cauchy density functions (k = 2 and

k = 1, respectively).

The characteristic function represented by (13b) corresponds to the Cauchy density

function with mean D.

1 B
p ( u ) = 1 2r B + (u-D)

We note that the following characteristic functions, which were considered by Balakrish-

nan, satisfy Eq. 8:

The discrete Poisson distribution with characteristic function

P(t) = e k (e j t - 1)

and the continuous F type of density with characteristic function

P(t) = [1-cjt] - '  y, c > 0.

However, consider the noise with characteristic function Pn(t) = [I-cjt]- ' . The cor-

responding message, if the filter is an attenuator with attenuation constant a, has, for
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its characteristic function,

Pm(t) = [1-cjt]-ya/(-a)

If we change the noise level and let

P (t) .-- Pn(kt) = [1-kcjt] - ' ,

the optimum filter is no longer an attenuator, although the noise is still of the F type.
1Note that if P (t) = P m(t), Eq. 8 is always satisfied with a = -, whatever Pm(t).

2. The Optimum Nonlinear No-Memory Filter of Prescribed Form

This problem has been considered quite generally by Balakrishnan. For mean-square

filtering and no-memory filters, his approach leads to a differential equation relating

the characteristic functions of the message and the noise whenever the filter g(x) has

the form of a specified polynomial in x. We shall extend this result to the case in which

g(x) is a ratio of polynomials.

Recently, Tung 3 has obtained the probability density of the input of the optimum filter

as a function of the filter characteristic g(x) when the noise is Gaussian. We shall estab-

lish necessary relations between the input density and the filter characteristic when the

noise is Poisson or of the r type.

We use expression (4) and the Fourier transforms of r(x) and q(x) which are

dP (t)
R(t) = P (t) d(jt)

Q(t) = Pn (t) Pm(t)

a. Filter characteristic g(x), a ratio of polynomials

M

k=0

g(x) - b=O

1=0

Hence

M NoI akxk q(x) = b x r(x)
a k=t It Fr =t0rs

By equating the Fourier transforms,
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([ dP (t)
M dk[P (t) P (t)] Nn d(jt)

ak n -= b d(jt)

k=O [d(jt)] k  J=0 [d(jt)]

If we know the characteristic function of the noise, this is a linear differential equation

with variable coefficients for the characteristic function of the message.

b. Relation between the input density function and the filter characteristic for various

types of noise

Consider again Eq. 4, which, by writing r(x) in terms of its Fourier transform, may

be written

1 + dPm(t) -jtx dt,
g(x) q(x) = Pn(t) d(jt) e dt, (14)

-0o

but we can write

dPm(t) d dPn(t)
Pn(t) d(jt) - [P (t) P (t)- P(t) d(jt)

n d(jt) d(jt) n m m d(jt)

Since q(x) is the Fourier transform of P (t) Pm(t), we haven

+00 dP n(t) -jtx
[g(x)-x] q(x)= - Pm(t) djt) dt . (15)

-oo

Comparison of (14) and (15) shows that if the characteristics of message and noise

are interchanged, then the characteristic of the optimum filter is changed from g(x) to

x - g(x). This is a general result holding for filters with memory, as well as non mean-

square criteria (see Schetzen4).

We define F(t) as

dPn(t)d(jt) F(t) P (t)d(jt) n

or

d[ln P (t) ]
F(t) = d(jt)

Let f(x) be the Fourier transform of F(t). Then by transforming the right-hand side of

Eq. 15, we obtain

[g(x)-x] q(x) = - q(x1 ) f (x-x ) dx 1 . (16)
-We shall now apply Eq. 16 to various types of noise. Since (16) is a homogeneous

We shall now apply Eq. 16 to various types of noise. Since (16) is a homogeneous
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equation, q(x) 0 is a solution. This solution is of no interest here, and henceforth we

shall assume that q(x) # 0.

For Gaussian noise,

2
o 2
2

P (t) e
n

and

d[ln P (t)]
= F(t)d

d(jt)

2

Hence

f(x) = - 2 ul(x) ,

in which ul(x) is the unit doublet occurring at x = 0. Equation 16 now takes the form

[g(x)-x] q(x) = -2 dqx

which can be integrated to give

q(x) = exp -
I (

This is the expression obtained by Tung. 3

For Poisson noise,

P (t) = ek(ejt
- l)

and

d[ln Pn(t)

d(jt)
= F(t) = X e j t

Therefore

f(x) = X u(x-1)

We denote by u(x-1) the unit impulse occurring at x = 1. Equation 16 now takes the form

[g(x)-x] q(x) = - X q(x-1) ,

which can be written

q(x+l) - A(x) q(x) = 0.

Here, we let
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A(x) = + 1 - g(x)x + I - g(x+l)

The solution of the difference equation (17) is well known.-

Let t(x) be an arbitrary single-valued function defined in a unit interval a < x < a+1.

Then we have

q(x) = t(a x)A(a x)A(a x+1) .. . A(x-1) x > a,

in which ax is the point in the interval a < x <

For noise of the F type,

Pn(t) = [1-cjt] - " y, c > 0

a+1 which is such that x - a x is an integer.x

Hence

d [ln P (t) ]

d(jt) = F(t)= cy[-cjt] -

d(jt)

and

y ex/

f(x) =

0

x >0

x<0 .

Now Eq. 16 takes the form

[g(x)-x] q(x) = -

which can be written

eX/c
[x-g(x)] q(x) e- =

By differentiation,

x -(x-x 1 )/c
\ q(xl) ye
COo

q(xl) e /

dx
1

dx
1

q(x) = q(x) ex/c

This is a differential equation for g(x) that can be written

dq(x) xg(x)

in which

1-g I(x)
+ q(x) +yg 'x

x-g (x) - = 0
yc

g'W dg(x)
dx

For q(x) * 0, we have
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dq(x)
= 1- T (x) 1 Y

q (x) x-g'(x) c x-g(x)'

and the expression for q(x) is

x

Bec ydxq(x) =-g exp
Ix-g(x) I x-x)

in which B is a positive constant.

If g(x), the characteristic of the nonlinear filter, is given and if the noise is of a type

considered above, then q(x), the probability density of the input, has to fulfill the

following conditions:

(i) q(x) has to satisfy the relation obtained in terms of g(x).

(ii) q(x) has to be a proper density function.

(iii) P(t) -= has to be a characteristic function in which we let Q(t) be thePn(t)

characteristic function for q(x), and P (t) be the characteristic function for the noise.

The third requirement comes from the fact that

Q(t) = Pm(t) Pn(t) I

in which Pm(t) is the characteristic function of the message.

A simple verification of the relations obtained between the input density function and

the filter characteristic can be made by taking g(x) = ax. We then know from the results

of section 1 the relation between the message and the noise, and hence the characteristic

of the input if the noise is known. Therefore, whenever the noise is Gaussian, Poisson

or of the r type, and g(x) = ax, we have an alternate derivation of q(x), the probability

density of the input.
V. R. Algazi
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E. METHODS OF DETERMINING COEFFICIENTS FOR OPTIMUM SYSTEMS

1. Introduction

Optimum linear systems can be determined analytically by solving the Wiener-Hopf

equation. No simple analytical solutions exist for the nonlinear case because the inte-

gral equation to be solved involves higher-order correlation functions. In view of the

complexity of the analytical approach to the nonlinear optimization problem, experimen-

tal optimization procedures seem to be advantageous. Two experimental optimization

techniques are discussed in this report.

The response of an optimum system can be represented as the sum of the responses

of several subsystems. Each subsystem consists of a network and a gain coefficient.

If the subsystems are linear, then the impulse response of any optimum linear system

can be represented in the form

h opt (t) a(t) , (1)

n

in which the a n are the gain coefficients, and the 0 n(t) are the impulse responses of the

subsystem. Similarly, if the subsystems are a set of nonlinear operators such as the

G-functional set, 2 any optimum nonlinear operation can be represented as a weighted

sum of the subsystem operations. In this way, any optimum system, linear or non-

linear, can be synthesized by a suitable choice of the gain coefficients an 3,4
There are several methods for determining the optimum gain coefficients. The

most popular of these is the Method of Steepest Descent. This method is an iterative

surface-searching procedure by which a given performance criterion can be maximized

through sequential adjustment of the gain coefficients. It has been shown 3 that under

ideal conditions the solutions obtained by this method converge to the optimum solutions

x@(t) ()

fi (t) 22(  + E(t) MULTIPLIER E2

- I AND
AVERAGER

n W (t) 
n 

d 

(t)

Fig. XIII-7. Basic optimization network.
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at a rate O(1/nl/2), where n is the number of iterations performed.

The Method of Steepest Descent is a general method. For instance, the pro-
cedure is the same regardless of the performance criterion chosen or the par-
ticular characteristics of the subsystems. We felt that the optimization could be

performed more quickly and accurately if the experimental technique employed
was designed specifically for a particular error criterion and a particular form
of network. Throughout the analytical and experimental investigation of these
techniques the performance criterion was always chosen to be the minimum mean-
square error. The form of the network was always an operator expansion, as
shown in Fig. XIII-7.

2. Optimization by Solving Simultaneous Equations

The mean-square error at the output of the network shown in Fig. XIII-7 is given by

2

E2(t) [f(t)-f d (t) 2 =[ anxm(t)- d(t) . (2)
n

A set of simultaneous equations which can be solved for the optimum gain coefficients

is generated as follows: The mean-square error is differentiated with respect to each
of the gain coefficients. Each of the derivatives is then set to zero to form N simul-
taneous equations for the gain coefficients.

2
alx1 + a2xl + ... + aNx1xN = xlf d

alx1x 2 + a +. + aNxN = x2f d

(3)

alXXN +  .."'. + aNxN x Nf d

The correlation coefficients, x.x- , (i=1, 2, . ., N), (j= 1, 2, . .. , N), and xf d , (i=1, 2, . N)

can be determined experimentally by multiplying the appropriate functions and averaging.

Of course, the correlation coefficients are determined with some error, since the indi-

cated averages cannot be performed over an infinite interval. In terms of the correlation

coefficients, the optimum gain coefficients are given by
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a.N d . i 1, 2, ... N (4)

2
x 1  • . . XlXN

2
x 1XN ". XN

Although this method is simple and direct, under certain conditions it will yield

results that are unstable. That is, the normalized variances of the gain coefficients

are much greater than the normalized variances of the correlation coefficients. This

difference occurs when the crosscorrelation coefficients xx7, i 0 j, are large; that is

22 2
x. x Z .x.. Then the denominator determinant of (4) is the difference of the two large,

1] 13
but almost equal, numbers. The numbers are the sums of products of experimentally

determined correlation coefficients. Since correlation coefficients are determined with

some error, the numbers will be in error. Consequently, the error in the difference of

the numbers will be large. Therefore, when two or more of the signals, x 1 (t), x 2 (t) . . . ,

xN(t), are strongly correlated, the denominator determinant approaches zero, and the

error in determining the optimum gain coefficients is large. The special case for which

the network of Fig. XIII-7 consists of only two filters was analyzed in detail. It was

found that the ratio of the normalized variance in the solution for a gain coefficient to the

normalized variance in measurement of the correlation coefficients was inversely pro-

portional to the fourth power of the denominator determinant of (4). Stable solutions can

be obtained if all of the crosscorrelation coefficients are small. Therefore, it is desired

that the outputs of the filters, x 1 (t), x 2 (t), ... , xN(t), be orthogonal.

3. Optimization by Orthogonalization

The set of signals x 1 (t), .... , xN(t) can be orthogonalized by forming a new set of

signals, Yl(t) .. ."N(t), in the following way:

yl(t) = xl(t)

y 2 (t) = x 2 (t) - a 2 1 l(t)

y 3 (t) = x 3 (t) - a 3 1 y l (t) - a 3 2 y 2 (t) (5)

YN(t) = xN(t) - aN1Yl(t) - aN2Y2 (t) ... aNN-1YN-1(t)
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The orthogonalization coefficients, aij, are determined sequentially to make Yi(t) yj(t) = 0
for i # j. The first coefficient, a 2 1, is determined by using the second equation of (5)
and the condition that yly 2 = 0. That is,

yly 2 = 0 1 - a21 and a21 . (6)
Y1

Having determined a 2 1 and y2 (t), we can find a31 and a32 from the conditions yIY3

2

y 1y 3 = 0 x 3Y 1 - a31Y1 - a 3 2 YlY2

(7)
2

y 2 y 3  0 = x 3 2 - a 3 1 1 2 - a32 2

The simultaneous equations, Eqs. 7, can be solved to determine a31 and a32 and thus

y3 (t). To determine y4 (t), three simultaneous equations must be solved, and so on. Note

that in solving Eqs. 7 it is not assumed that yly 2 = 0. Since a 2 1 is determined experi-

mentally, yly 2 will be generally small but not zero. Note also that the solutions obtained

from these simultaneous equations are stable because yiy j , i * j, is always small.

When the set of signals Yi(t) is completely constructed, a set of optimum gain coef-

ficients can be determined by using Eqs. 4 (by changing all x i to yi)
Two methods have been presented: the method of optimization by solving simulta-

neous equations, and the method of optimization by orthogonalization. A statistical analy-

sis of these methods was found to be very complicated. However, the expected value of

the mean-square error was calculated for a special case - the system of Fig. XIII-7

consisting of only two subsystems. For this case, it was possible to determine that the

rate of convergence of the expected value of the mean-square error was at least pro-

portional to 1/T for either method. In general, the rate of convergence can be expected

to be faster than that for the Method of Steepest Descent. Some insight into the charac-

terisitcs of these procedures for the general N-filter case was gained from the analysis

of the two-filter case. In particular, we found that for some problems, the solution

obtained by the method of optimization by solving simultaneous equations was unstable.

The method of optimization by orthogonalization is always stable, but it must be a

sequential process. In fact, for a network with N subsystems, the orthogonalization

method requires N cycles of (N+1) measurements. The method of optimization by solving
1

simultaneous equations requires N(N+3) measurements. These can be performed

simultaneously. This means that for a fixed averaging time and an unlimited number of

correlation-coefficient calculators, the orthogonalization method takes approximately N

times longer than the method of optimization by solving simultaneous equations. If from

one to N correlation-coefficient calculators are available, the orthogonalization method

still takes approximately twice as long for large N.
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Fig. XIII-8. Mean of the mean-square error.
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4. Experimental Comparison of Optimization Methods

An experiment demonstrating the operation and performance of the optimization

methods for a special case - the network of Fig. XIII-7 consisting of only two linear sub-

systems - was carried out on a Philbrick Analog Computer in the Engineering Projects

Laboratory, M. I. T. In this experiment, the frequency responses of the subsystems were

10
e(s) 10

Ss + 10

and

60 - 11.5s
e( (s) s+0) 2

(s+10)2

The input was Gaussian noise with power density spectrum given by

2

~~1 2+1000)(w2+400)

The desired output was constructed so that fd(t) = x 1 (t) + x2 (t), where x 1 (t) and x2 (t) are

2 -'
rx is the variance of Ex

2 t ir is the variance of C

50 100 300

Optimization time (sec)
1 multiplier

10-

1-

:

30 100 200

Optimization time (sec)
2 multipliers

10-

, ,

7L q

: : ii! Y :I ..

. . : - :. .:

10 20 5o

Optimization time (sec)
5 multipliers

Fig. XIII-9. Variance of the mean-square error.
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the outputs of the subsystems shown in Fig. XIII-7. The optimization experiment was

performed many times under various conditions. Several values of the mean-square

errors E 2(t), the mean-square error obtained by the method of optimization by solving

simultaneous equations, and E 2(t), the mean-square error obtained by the orthogonal-
y

ization method, were observed. The means and variances of these mean-square errors

were compared as a function of the total optimization time and of the number of corre-

lation-coefficient calculators (that is, multipliers) that were available. The total number

of correlation-coefficient calculators required is a very practical criterion, since an

accurate wideband multiplier is costly. The results are shown in Fig. XIII-8 and

Fig. XIII-9.

The rate of convergence of the mean of the mean-square error for the method of

optimization by solving simultaneous equations is roughly proportional to 1/T in all three

cases considered in Fig. XIII-8, whereas the rate of convergence of the mean of the

mean-square error for the method of optimization by orthogonalization is roughly pro-

portional to 1/T . The variance of the mean-square error for the method of optimiza-

tion by solving simultaneous equations converges faster than 1/T 2 for all three cases

considered in Fig. XIII-9, whereas the variance of the mean-square error for the ortho-

gonalization method converges faster than 1/T 3

5. Conclusions

The advantages of optimization by orthogonalization over optimization by solving

simultaneous equations are not clear-cut. Consider two limiting conditions. If the out-

puts x 1 (t) ... xN(t) are almost orthogonal, the orthogonalization procedure is a waste

of time. More accurate solutions can be obtained with the method of optimization by

solving simultaneous equations directly. In this case, the direct solutions will be stable.

On the other hand, if any one of the signals x 1 (t) ... xN(t) has a strong dependent com-

ponent, then the solutions obtained by the direct method are unstable, and the orthogo-

nalization method must be used.

The advantages of one method over the other are entirely a function of the

network that is to be optimized and the specifications of the optimization prob-

lem. Therefore, if a system of the type described in this report is constructed,

it should be adaptable to either of these optimization techniques. The two opti-

mization techniques could then be applied in combination as follows: A quick

examination of the outputs of the subsystems would determine which of the out-

puts must be orthogonalized to insure the stability of the solutions. Then the

orthogonalization procedure would be used to orthogonalize only those signals with

large dependent components.

II. C. Salwen
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F. SYNTHESIS OF SEVERAL SETS OF ORTHOGONAL FUNCTIONS

1. Introduction

A set of networks was designed and constructed whose impulse responses comprise

the first 12 terms of two orthogonal sets of functions, the Laguerre set and an exponen-

tial set, and a set of Fourier functions. Circuitry was also constructed so that linear

systems can be synthesized by expansions in terms of these sets of functions.

A synthesis system of this type has many applications in communication studies. For

example, it can be used in the representation and analysis of signals, l ' 2 in the synthesis

of linear systems,3 in the synthesis of the memory portion of nonlinear systems,4 and
5,6in the measurement of correlation functions.

2. Method of Synthesis

3The method of synthesizing these functions is described in detail by Lee. In sum-

mary, if the general term of the set of Laguerre functions is written in the form

L( 1 p-s) n

L (s) = F 1n (1)n 27r p + s I

it is evident that a network with the transfer function (1) can be realized by means of a

lag network followed by n pure phase-shift networks in cascade. Furthermore, the
(n+l) t h term can be realized simply by the addition of another pure phase-shift network

to the chain. A synthesis system for expansion in terms of the Laguerre functions is

then obtained by incorporating adjustable coefficients and an algebraic summing circuit.

A set of Fourier functions that are closely related to the Laguerre functions have

the general term3

F (s) 1 p-sn (2)Fn(S) r2 -thp+s

Clearly, a synthesis system in terms of this set can be obtained from the Laguerre
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realization simply by bypassing the initial lag network.

Lee 3 shows that an orthonormal set of exponential functions has the general term

U (S ) = p (p-s (p-sn 2r p +s 2p+s
[n-l] p-s 1
[n-l]p+s np+s

Inspection of this expression shows that each term is common to all previous terms

except for the factor (Pn1 ) A network realization is therefore possible in the form
np+s

of a phase-shift chain followed by a lag network for each term.

3. Block Diagram of Synthesizer

A block diagram of the synthesis system is shown in Fig. XIII-10. It is evident that

the circuit can be modified by means of switches and capacitance to obtain the 3 sets of

functions. For the exponential set, it is necessary to interchange the coefficient poten-

tiometers and the lag networks because of the impedance levels involved. This change

Sa12

~-, (-)

Fig. XIII-10. Linear system synthesizer block diagram.
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does not affect the operation of the synthesis system in any way. The input selector

switch, SWI, is set to position 1 for the Laguerre set, and to position 2 for the Fourier

and exponential sets. With SWI in position 3, the impulse responses of the Laguerre

networks can be observed in response to a step input.

All of the phase-shift networks, S1-S11 have the same scale factor, p, for the

Laguerre and Fourier sets. To obtain the exponential set, additional capacitance and

the lag networks, N 1 -N 1 2 , are switched into the circuit by means of SW10, 20, ... , 120.

The coefficients are adjusted by means of potentiometers R15, 25, ... , 125. The coef-

ficient read-out (a 1 , a2 , ... , a 1 2 ) is placed after the lag networks for alignment pur-

poses.

Since the coefficients may be either positive or negative, two summing networks

are provided. Each term may be connected to either summing circuit by switches

SW11, 21, ... , 121. The outputs of the two summing circuits are then connected to a

single-ended difference amplifier, by which the resultant of all the negative coefficients

is conveniently inverted.

4. Description of the Circuit

The schematic diagram for the linear system synthesizer is shown in Fig. XIII-11.

Vacuum tubes rather than transistors are used primarily to obtain maximum isolation

between phase-shift networks with a minimum of components. The input signal to the

system desirably should have an amplitude from 10-50 volts peak.

a. Input Circuitry

A cathode-follower input stage is used to prevent the source impedance from

affecting the time constant of the lag network composed of R4, R5, and Cl. This net-

work is the realization of No in the block diagram of Fig. XIII-10. Potentiometer R5

is a fine adjustment for exactly setting the time constant of the lag network. The cathode

follower also enables the dc level at the grid of V1 to be shifted to approximately -32

volts. Potentiometer R2 is adjusted so that the cathode voltages of tubes V1-V12 match

the Zener diode voltages A 1 -A 1 2 as closely as possible.

b. Pure Phase-Shift Networks

One of the most important aspects of the circuit design was the realization of a good

phase-shift network. Of the alternative methods that can be used, of which some are

described by Witte 7 the active RC bridge circuit shown in Fig. XIII-12 was selected.

This network, suggested by Huggins, has the advantages that the input and output are

single-ended, the capacitor blocks the plate voltage from the succeeding stage, feed-

back resulting from cathode resistance provides excellent stabilization, the gain of the

stage is very nearly unity, and linear operation is achieved over a large dynamic range.
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One disadvantage is that the dc level of the output exceeds that of the input by the grid-

to-cathode bias voltage.

The transfer function for this circuit has been determined to be:

H(s) = K(s-a) -~RRL(s-b) RRT + r (RK+R L)

RK

s RR LC

RT
s+ [RRT+rp(RK+RL)]C

RT = (+l) RK + r + RL.

In order to obtain all-pass characteristics, component values must be chosen so that
a = b. Expressing RT, which is independent of R, in the form

RT = (.+6)R
K '

where

r R
6 = 1 +P+ L

RK RK

one obtains as the criterion for a symmetrical pole-zero pattern on the real axis

of the s-plane

r

e/g

P

RL
e Cg

n -e +

RK R

(b)

Fig. XIII-12. Active RC synthesis of pure phase-shift network. (a) One-tube
K(s-a)realization of H(s) = (s-a+b) (b) Incremental circuit drawn as

a bridge network.
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R L= R X p (6)

It is interesting that the criterion (6) can also be obtained by requiring that the magnitude

of the transfer function (4) at dc equal the magnitude at infinite frequency.

The circuit has been designed so that (g+ -) R g R >> 1. Therefore, as indi-
mr m

P
cated by Eq. 6, RL 2' R K , and the transconductance of the tube has very little effect on

the equality of a and b. Furthermore, with reference to Eq. 4, it is seen that

a = b 1- for (7)
RC R L  R K '

Thus, as long as the conditions leading to the result (7) remain satisfied, the pole and

zero locations of the transfer function (4) can be varied symmetrically about the imagi-

nary axis of the s-plane as a function of either R or C.

The component values which were chosen for the phase-shift networks are shown in

Fig. XII-11. The 5k potentiometer in the plate circuit of each stage primarily varies

the location of the zero of H(s) in (4) to make a = b. A fine adjustment for setting the

scale factor, p, is provided by the 50k potentiometer in the RC branch of the circuit.

For a large change in scale factor, such as in converting to the exponential set,

additional capacitance is used.

c. Phase-Shift Chain

It was felt that the system would be most useful if as many terms as possible of the

orthogonal expansions were constructed. The decision to build 12 terms was based

primarily on the estimated attenuation in gain per stage of 0. 95. Assuming that this is

also the gain of the cathode-follower buffer amplifier associated with the last term, the

over-all attenuation of the phase-shift chain for 12 terms would be (0. 95)12 = 0. 54. This

decrease in gain should permit the coefficient potentiometers for all terms to be

adjusted over a reasonable range without requiring any intermediate stages of ampli-

fication. The fact that the plate voltage for each successive stage decreases by the same

factor as the gain results in a constant dynamic range for the entire phase-shift chain.

The main problem encountered in the cascading of the phase-shift networks is the

increase in the dc level at the output of each stage by the grid-to-cathode bias voltage.

This makes it impractical to connect the coefficient potentiometers from the cathode of

each stage to ground, as a change in setting would be accompanied by a significant change

in de level in most cases. The coefficient potentiometers, therefore, are connected to

a Zener diode string that matches the de cathode bias voltages.
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With reference to Fig. XIII-I ,capacitors C4 through C7 are used to prevent cross

talk between terms at frequencies above 20 cps. At frequencies below 20 cps, however,

some coupling between terms exists. Since the outputs of all of the phase-shift networks

are very nearly in phase at low frequencies, a circuit is at present being designed to

cancel this signal by means of an out-of-phase component.

d. Adjustable Coefficients

Attenuators rather than variable-gain amplifiers have been used for the adjustable

coefficients for better drift stability. It should be noted that the output of each phase-

shift network is taken from the cathode of the succeeding stage. This arrangement elimi-

nates the need for buffer amplifiers to prevent loading of the phase-shift chain, and at

the same time provides a low source impedance (475 ohms) for the coefficient potentio-

meters. A cathode follower is necessary only for the final phase-shift network.

For the Laguerre and Fourier sets, the setting of the coefficients has no effect on

the summing circuit, which has an input impedance of 1. 5 megohms for either polarity.

Similarly, the summing circuit does not cause any disturbance in the phase-shift chain

in varying the coefficient settings.

The system has been provided with a rotary switch that enables the settings of the

coefficient potentiometers to be either adjusted or measured in cyclic order. As previ-

ously mentioned, the coefficient read-out has been placed after the lag networks of the

exponential set for alignment purposes.

e. Lag Networks

The lag networks for the exponential set are formed by switching the capacitors, Cb,
into the circuit and, at the same time, switching the resistance in series with the arm

of the coefficient potentiometers. A fine adjustment for the scale factor of the lag net-

works is provided by the 50k potentiometers. The values of Ca and C b listed in the table

in Fig. XIII-11 are calculated to give a fundamental scale factor, p = 2rr X 100 rad/sec.

Impedance levels between the coefficient potentiometers, the lag networks, and the

summing circuit differ only by factors of 10. Thus, in using the exponential set, the

effect of one portion of the synthesis system on another should be taken into account for

best accuracy. In the future, it would be desirable to incorporate some changes in the

circuit to improve this situation.

f. Summing Circuit

Passive summation has been used to minimize the number of active circuit elements

and their associated drift. Two summing circuits are employed in which all positive

coefficients are combined in one group and all negative coefficients in the other, as

shown in Fig. XIII-10. The two summing circuits are identical, so that each term can
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be connected to either circuit, as desired, without affecting the other. As shown in

Fig. XIII-11, this is accomplished with a double-pole, double-throw switch and a pair

of matched resistors for each term. Potentiometer R202 is used to adjust for any dif-

ferences that might exist between the two summing circuits.

In connection with the double-pole, double-throw polarity switches, a suggestion for

future systems is to use three-position toggle switches (+, off, -). It would then be pos-

sible to disconnect terms in the orthogonal expansion without destroying coefficient

settings. This would facilitate an investigation of the contribution of a given term in the

expansion to the over-all impulse response of the system.

g. Difference Amplifier

The outputs of the two summing circuits are connected to a cathode-coupled difference

amplifier to complete the synthesis system. In this way, the sum of all terms whose

coefficients are negative are conveniently subtracted from the sum of the remaining

terms whose coefficients are positive. The use of a difference amplifier as an input

stage tends to minimize drift resulting from plate-supply and filament-voltage variations,

and also makes it possible to convert a balanced input to a single-ended output. Potentio-

meter R203 is used to equalize the gains with respect to both amplifier inputs.

The difference amplifier is followed by a stage of additional amplification, if needed,

and a cathode-follower output stage. Coupling between stages is by means of resistive

divider networks to obtain proper biasing. Capacitors C202, C203, and C204 are

selected to compensate for the attenuation in gain at high frequencies.

5. Results and Conclusions

The synthesis system was constructed in a chassis that is suitable for rack-mounting.

The circuit was then checked out stage by stage and aligned according to a procedure

previously described. 7 The over-all performance indicates that the objective has been

achieved of designing and building a system for representing system functions whose

frequency spectrums are primarily confined to the audio range.

a. Bandwidth Considerations

In order to represent systems functions with the Laguerre functions at frequencies

relatively high as compared with the scale factor, higher-order terms are required.

To verify this statement, assume that we wish to represent a system function, H(w),

whose frequency spectrum extends to roughly w = kp rad/sec, by means of a set of

Laguerre networks. The Fourier transform of the impulse response of the nth-order

network is

L() (pj)n 1 -j2n () (8)
n (p+j) n + IV2(

p2+ 2
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where

c(c) = tan -

At the frequency, w = kp, where k > 1,

(w) = tan- 1 k - radians (9)

= kp k>> 1

and

L(w) I)(-1)n ej2n/k (10)

n 0= kp p k

From Eq. 10 we conclude that if k is large, n must also be large in order to have suf-

ficient phase response at w = kp for satisfactorily characterizing H(w) at that frequency.

In other words, for a given scale factor, the frequency range that can be accomodated

by the Laguerre networks is determined by the number of terms.

It is also evident from this result that one disadvantage of the cascade method of

synthesis is that the over-all bandwidth decreases as the number of terms increases.

Thus, for a given bandwidth per stage, a definite limit on the number of terms is imposed

if the effects of high-frequency magnitude and phase distortion are to be avoided. In the

synthesis system that was constructed, the bandwidth for 11 phase-shift networks in

cascade is approximately 15 kc. For a scale factor of p = 2wr X 1000 rad/sec, the phase

response at 15 kc at the output of the eleventh all-pass network is within -2- radians of
2

its asymptotic high-frequency value of -117r radians. Thus, the system has sufficient

bandwidth to represent functions over the frequency range in which most of the phase

shift takes place, that is, from approximately 100 cps to 10 kc. Several additional

terms, however, might decrease the over-all bandwidth so that high-frequency magnitude

and phase distortion would occur. For the exponential set, the scale factor of the phase-

shift networks increases with successive terms. This tends to accentuate the effect of

the decreasing over-all bandwidth even more than with the Laguerre set.

b. Response of the Laguerre Networks

As a demonstration of the performance of the system, photographs of the impulse

responses of the network realizations of the Laguerre functions are shown in Fig. XIII-13.

These functions were obtained in response to a step input, so that the problem of gener-

ating a "satisfactory" impulse in the laboratory was avoided. Also, the possibility of

saturating the cathode-follower input stage (V13) with a large voltage spike is

avoided.
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n =0, 1

p = 2w X 1000 rad/sec

t = 0. 1 msec/cm

n= 6, 7

p = Zw X 1000 rad/sec

t = 0. 5 msec/cm

n = 2, 3

p = Zw X 1000 rad/see

t = 0. 2 msec/cm

n= 8, 9

p = 2w X 1000 rad/sec

t = 0. 5 msec/cm

n= 4,5

p = Z1 X 1000 rad/sec

t = 0. 2 msec/cm

n= 10, 11

p = 2w X 1000 rad/sec

t = 0. 5 msec/cm

Fig. XIII-13. The Laguerre functions {ln (t)}.
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Inspection of the waveforms in Fig. XIII-13 shows that the initial values alternate

as they should for successive terms according to (- 1 )n , in which n is the order of the

term in the set, { n(t)}. Close inspection of the photographs also verifies that the num-

ber of zero crossings for each term is equal to the designating subscript of the function.

It is interesting to note that the peaks of the sixth- and higher-order terms do not

decrease monotonically, as might be expected from the nature of the first few terms.

It can also be seen that higher frequency components are evidenced as the order of the

terms increases. Each set of three functions in Fig. XIII-13 has the same time scale.

Comparison of the first 6 terms with actual plots of the functions shows that they are

in close agreement. A tabulation through the eighth term also indicates close agree-

ment.
R. W. Witte
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