74 research outputs found
Relativistic Dyson Rings and Their Black Hole Limit
In this Letter we investigate uniformly rotating, homogeneous and
axisymmetric relativistic fluid bodies with a toroidal shape. The corresponding
field equations are solved by means of a multi-domain spectral method, which
yields highly accurate numerical solutions. For a prescribed, sufficiently
large ratio of inner to outer coordinate radius, the toroids exhibit a
continuous transition to the extreme Kerr black hole. Otherwise, the most
relativistic configuration rotates at the mass-shedding limit. For a given
mass-density, there seems to be no bound to the gravitational mass as one
approaches the black-hole limit and a radius ratio of unity.Comment: 13 pages, 1 table, 5 figures, v2: some discussion and two references
added, accepted for publication in Astrophys. J. Let
Signatures of the correlation hole in total and partial cross sections
In a complex scattering system with few open channels, say a quantum dot with
leads, the correlation properties of the poles of the scattering matrix are
most directly related to the internal dynamics of the system. We may ask how to
extract these properties from an analysis of cross sections. In general this is
very difficult, if we leave the domain of isolated resonances. We propose to
consider the cross correlation function of two different elastic or total cross
sections. For these we can show numerically and to some extent also
analytically a significant dependence on the correlations between the
scattering poles. The difference between uncorrelated and strongly correlated
poles is clearly visible, even for strongly overlapping resonances.Comment: 25 pages, 13 Postscript figures, typos corrected and references adde
Phase transitions in open quantum systems
We consider the behaviour of open quantum systems in dependence on the
coupling to one decay channel by introducing the coupling parameter
being proportional to the average degree of overlapping. Under critical
conditions, a reorganization of the spectrum takes place which creates a
bifurcation of the time scales with respect to the lifetimes of the resonance
states. We derive analytically the conditions under which the reorganization
process can be understood as a second-order phase transition and illustrate our
results by numerical investigations. The conditions are fulfilled e.g. for a
picket fence with equal coupling of the states to the continuum. Energy
dependencies within the system are included. We consider also the generic case
of an unfolded Gaussian Orthogonal Ensemble. In all these cases, the
reorganization of the spectrum occurs at the critical value of
the control parameter globally over the whole energy range of the spectrum. All
states act cooperatively.Comment: 28 pages, 22 Postscript figure
Interfering Doorway States and Giant Resonances. I: Resonance Spectrum and Multipole Strengths
A phenomenological schematic model of multipole giant resonances (GR) is
considered which treats the external interaction via common decay channels on
the same footing as the coherent part of the internal residual interaction. The
damping due to the coupling to the sea of complicated states is neglected. As a
result, the formation of GR is governed by the interplay and competition of two
kinds of collectivity, the internal and the external one. The mixing of the
doorway components of a GR due to the external interaction influences
significantly their multipole strengths, widths and positions in energy. In
particular, a narrow resonance state with an appreciable multipole strength is
formed when the doorway components strongly overlap.Comment: 20 pages, LaTeX, 3 ps-figures, to appear in PRC (July 1997
On the black hole limit of rotating discs and rings
Solutions to Einstein's field equations describing rotating fluid bodies in
equilibrium permit parametric (i.e. quasi-stationary) transitions to the
extreme Kerr solution (outside the horizon). This has been shown analytically
for discs of dust and numerically for ring solutions with various equations of
state. From the exterior point of view, this transition can be interpreted as a
(quasi) black hole limit. All gravitational multipole moments assume precisely
the values of an extremal Kerr black hole in the limit. In the present paper,
the way in which the black hole limit is approached is investigated in more
detail by means of a parametric Taylor series expansion of the exact solution
describing a rigidly rotating disc of dust. Combined with numerical
calculations for ring solutions our results indicate an interesting universal
behaviour of the multipole moments near the black hole limit.Comment: 18 pages, 4 figures; Dedicated to Gernot Neugebauer on the occasion
of his 70th birthda
Spectral Decorrelation of Nuclear Levels in the Presence of Continuum Decay
The fluctuation properties of nuclear giant resonance spectra are studied in
the presence of continuum decay. The subspace of quasi-bound states is
specified by one-particle one-hole and two-particle two-hole excitations and
the continuum coupling is generated by a scattering ensemble. It is found that,
with increasing number of open channels, the real parts of the complex
eigenvalues quickly decorrelate. This appears to be related to the transition
from power-law to exponential time behavior of the survival probability of an
initially non-stationary state.Comment: 10 Pages, REVTEX, 4 PostScript figure
Differentially rotating disks of dust: Arbitrary rotation law
In this paper, solutions to the Ernst equation are investigated that depend
on two real analytic functions defined on the interval [0,1]. These solutions
are introduced by a suitable limiting process of Backlund transformations
applied to seed solutions of the Weyl class. It turns out that this class of
solutions contains the general relativistic gravitational field of an arbitrary
differentially rotating disk of dust, for which a continuous transition to some
Newtonian disk exists. It will be shown how for given boundary conditions (i.
e. proper surface mass density or angular velocity of the disk) the
gravitational field can be approximated in terms of the above solutions.
Furthermore, particular examples will be discussed, including disks with a
realistic profile for the angular velocity and more exotic disks possessing two
spatially separated ergoregions.Comment: 23 pages, 3 figures, submitted to 'General Relativity and
Gravitation
Resonance trapping and saturation of decay widths
Resonance trapping appears in open many-particle quantum systems at high
level density when the coupling to the continuum of decay channels reaches a
critical strength. Here a reorganization of the system takes place and a
separation of different time scales appears. We investigate it under the
influence of additional weakly coupled channels as well as by taking into
account the real part of the coupling term between system and continuum. We
observe a saturation of the mean width of the trapped states. Also the decay
rates saturate as a function of the coupling strength. The mechanism of the
saturation is studied in detail. In any case, the critical region of
reorganization is enlarged. When the transmission coefficients for the
different channels are different, the width distribution is broadened as
compared to a chi_K^2 distribution where K is the number of channels. Resonance
trapping takes place before the broad state overlaps regions beyond the
extension of the spectrum of the closed system.Comment: 18 pages, 8 figures, accepted by Phys. Rev.
- …