48 research outputs found

    Selective vulnerability to atrophy in sporadic Creutzfeldt-Jakob disease

    Get PDF
    Identification of brain regions susceptible to quantifiable atrophy in sporadic Creutzfeldt-Jakob disease (sCJD) should allow for improved understanding of disease pathophysiology and development of structural biomarkers that might be useful in future treatment trials. Although brain atrophy is not usually present by visual assessment of MRIs in sCJD, we assessed whether using voxel-based morphometry (VBM) can detect group-wise brain atrophy in sCJD. 3T brain MRI data were analyzed with VBM in 22 sCJD participants and 26 age-matched controls. Analyses included relationships of regional brain volumes with major clinical variables and dichotomization of the cohort according to expected disease duration based on prion molecular classification (i.e., short-duration/Fast-progressors (MM1, MV1, and VV2) vs. long-duration/Slow-progressors (MV2, VV1, and MM2)). Structural equation modeling (SEM) was used to assess network-level interactions of atrophy between specific brain regions. sCJD showed selective atrophy in cortical and subcortical regions overlapping with all but one region of the default mode network (DMN) and the insulae, thalami, and right occipital lobe. SEM showed that the effective connectivity model fit in sCJD but not controls. The presence of visual hallucinations correlated with right fusiform, bilateral thalami, and medial orbitofrontal atrophy. Interestingly, brain atrophy was present in both Fast- and Slow-progressors. Worse cognition was associated with bilateral mesial frontal, insular, temporal pole, thalamus, and cerebellum atrophy. Brain atrophy in sCJD preferentially affects specific cortical and subcortical regions, with an effective connectivity model showing strength and directionality between regions. Brain atrophy is present in Fast- and Slow-progressors, correlates with clinical findings, and is a potential biomarker in sCJD

    Effects of intranasal TNFα on granulocyte recruitment and activity in healthy subjects and patients with allergic rhinitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>TNFα may contribute to the pathophysiology of airway inflammation. For example, we have recently shown that nasal administration of TNFα produces late phase co-appearance of granulocyte and plasma exudation markers on the mucosal surface. The objective of the present study was to examine indices of granulocyte presence and activity in response to intranasal TNFα challenge.</p> <p>Methods</p> <p>Healthy subjects and patients with allergic rhinitis (examined out of season) were subjected to nasal challenge with TNFα (10 μg) in a sham-controlled and crossover design. Nasal lavages were carried out prior to and 24 hours post challenge. Nasal biopsies were obtained post challenge. Nasal lavage fluid levels of myeloperoxidase (MPO) and eosinophil cationic protein (ECP) were analyzed as indices of neutrophil and eosinophil activity. Moreover, IL-8 and α<sub>2</sub>-macroglobulin were analyzed as markers of pro-inflammatory cytokine production and plasma exudation. Nasal biopsy numbers of neutrophils and eosinophils were monitored.</p> <p>Results</p> <p>Nasal lavage fluid levels of MPO recorded 24 hours post TNFα challenge were increased in healthy subjects (p = 0.0081) and in patients with allergic rhinitis (p = 0.0081) (<it>c.f</it>. sham challenge). Similarly, α<sub>2</sub>-macroglobulin was increased in healthy subjects (p = 0.014) and in patients with allergic rhinitis (p = 0.0034). Lavage fluid levels of ECP and IL-8 were not affected by TNFα challenge. TNFα increased the numbers of subepithelial neutrophils (p = 0.0021), but not the numbers of eosinophils.</p> <p>Conclusion</p> <p>TNFα produces a nasal inflammatory response in humans that is characterised by late phase (i.e., 24 hours post challenge) neutrophil activity and plasma exudation.</p

    Diagnostic Utility of Measuring Cerebral Atrophy in the Behavioral Variant of Frontotemporal Dementia and Association With Clinical Deterioration

    Get PDF
    Can widely available measures of atrophy on magnetic resonance imaging increase diagnostic certainty of underlying frontotemporal lobar degeneration (FTLD) and estimate clinical deterioration in the behavioral variant of frontotemporal dementia (bvFTD)? This diagnostic/prognostic study investigated the clinical utility of 5 validated visual atrophy scales (VAS) and the Magnetic Resonance Parkinsonism Index. When combined, VAS showed excellent diagnostic performance for differentiating between bvFTD with high and low confidence of FTLD and for the estimation of longitudinal clinical deterioration, whereas the Magnetic Resonance Parkinsonism Index was increased in bvFTD with underlying 4-repeat tauopathies. These findings suggest that, in bvFTD, VAS can be used to increase diagnostic certainty of underlying FTLD and estimate longitudinal clinical deterioration. This diagnostic/prognostic study assesses the utility of 6 visual atrophy scales and the Magnetic Resonance Parkinsonism Index in patients with behavioral variant frontotemporal dementia to distinguish those with high vs low confidence of frontotemporal lobar degeneration. The presence of atrophy on magnetic resonance imaging can support the diagnosis of the behavioral variant of frontotemporal dementia (bvFTD), but reproducible measurements are lacking. To assess the diagnostic and prognostic utility of 6 visual atrophy scales (VAS) and the Magnetic Resonance Parkinsonism Index (MRPI). In this diagnostic/prognostic study, data from 235 patients with bvFTD and 225 age- and magnetic resonance imaging-matched control individuals from 3 centers were collected from December 1, 1998, to September 30, 2019. One hundred twenty-one participants with bvFTD had high confidence of frontotemporal lobar degeneration (FTLD) (bvFTD-HC), and 19 had low confidence of FTLD (bvFTD-LC). Blinded clinicians applied 6 previously validated VAS, and the MRPI was calculated with a fully automated approach. Cortical thickness and subcortical volumes were also measured for comparison. Data were analyzed from February 1 to June 30, 2020. The main outcomes of this study were bvFTD-HC or a neuropathological diagnosis of 4-repeat (4R) tauopathy and the clinical deterioration rate (assessed by longitudinal measurements of Clinical Dementia Rating Sum of Boxes). Measures of cerebral atrophy included VAS scores, the bvFTD atrophy score (sum of VAS scores in orbitofrontal, anterior cingulate, anterior temporal, medial temporal lobe, and frontal insula regions), the MRPI, and other computerized quantifications of cortical and subcortical volumes. The areas under the receiver operating characteristic curve (AUROC) were calculated for the differentiation of participants with bvFTD-HC and bvFTD-LC and controls. Linear mixed models were used to evaluate the ability of atrophy measures to estimate longitudinal clinical deterioration. Of the 460 included participants, 296 (64.3%) were men, and the mean (SD) age was 62.6 (11.4) years. The accuracy of the bvFTD atrophy score for the differentiation of bvFTD-HC from controls (AUROC, 0.930; 95% CI, 0.903-0.957) and bvFTD-HC from bvFTD-LC (AUROC, 0.880; 95% CI, 0.787-0.972) was comparable to computerized measures (AUROC, 0.973 [95% CI, 0.954-0.993] and 0.898 [95% CI, 0.834-0.962], respectively). The MRPI was increased in patients with bvFTD and underlying 4R tauopathies compared with other FTLD subtypes (14.1 [2.0] vs 11.2 [2.6] points; P < .001). Higher bvFTD atrophy scores were associated with faster clinical deterioration in bvFTD (1.86-point change in Clinical Dementia Rating Sum of Boxes score per bvFTD atrophy score increase per year; 95% CI, 0.99-2.73; P < .001). Based on these study findings, in bvFTD, VAS increased the diagnostic certainty of underlying FTLD, and the MRPI showed potential for the detection of participants with underlying 4R tauopathies. These widely available measures of atrophy can also be useful to estimate longitudinal clinical deterioration

    Prediction of overall survival for patients with metastatic castration-resistant prostate cancer : development of a prognostic model through a crowdsourced challenge with open clinical trial data

    Get PDF
    Background Improvements to prognostic models in metastatic castration-resistant prostate cancer have the potential to augment clinical trial design and guide treatment strategies. In partnership with Project Data Sphere, a not-for-profit initiative allowing data from cancer clinical trials to be shared broadly with researchers, we designed an open-data, crowdsourced, DREAM (Dialogue for Reverse Engineering Assessments and Methods) challenge to not only identify a better prognostic model for prediction of survival in patients with metastatic castration-resistant prostate cancer but also engage a community of international data scientists to study this disease. Methods Data from the comparator arms of four phase 3 clinical trials in first-line metastatic castration-resistant prostate cancer were obtained from Project Data Sphere, comprising 476 patients treated with docetaxel and prednisone from the ASCENT2 trial, 526 patients treated with docetaxel, prednisone, and placebo in the MAINSAIL trial, 598 patients treated with docetaxel, prednisone or prednisolone, and placebo in the VENICE trial, and 470 patients treated with docetaxel and placebo in the ENTHUSE 33 trial. Datasets consisting of more than 150 clinical variables were curated centrally, including demographics, laboratory values, medical history, lesion sites, and previous treatments. Data from ASCENT2, MAINSAIL, and VENICE were released publicly to be used as training data to predict the outcome of interest-namely, overall survival. Clinical data were also released for ENTHUSE 33, but data for outcome variables (overall survival and event status) were hidden from the challenge participants so that ENTHUSE 33 could be used for independent validation. Methods were evaluated using the integrated time-dependent area under the curve (iAUC). The reference model, based on eight clinical variables and a penalised Cox proportional-hazards model, was used to compare method performance. Further validation was done using data from a fifth trial-ENTHUSE M1-in which 266 patients with metastatic castration-resistant prostate cancer were treated with placebo alone. Findings 50 independent methods were developed to predict overall survival and were evaluated through the DREAM challenge. The top performer was based on an ensemble of penalised Cox regression models (ePCR), which uniquely identified predictive interaction effects with immune biomarkers and markers of hepatic and renal function. Overall, ePCR outperformed all other methods (iAUC 0.791; Bayes factor >5) and surpassed the reference model (iAUC 0.743; Bayes factor >20). Both the ePCR model and reference models stratified patients in the ENTHUSE 33 trial into high-risk and low-risk groups with significantly different overall survival (ePCR: hazard ratio 3.32, 95% CI 2.39-4.62, p Interpretation Novel prognostic factors were delineated, and the assessment of 50 methods developed by independent international teams establishes a benchmark for development of methods in the future. The results of this effort show that data-sharing, when combined with a crowdsourced challenge, is a robust and powerful framework to develop new prognostic models in advanced prostate cancer.Peer reviewe

    Determination of Optimal Multiyear Air Pollution Control Policies

    No full text
    corecore