5,532 research outputs found

    Prehypertensive blood pressures and regional cerebral blood flow independently relate to cognitive performance in midlife

    Get PDF
    Background High blood pressure is thought to contribute to dementia in late life, but our understanding of the relationship between individual differences in blood pressure ( BP ) and cognitive functioning is incomplete. In this study, cognitive performance in nonhypertensive midlife adults was examined as a function of resting BP and regional cerebral blood flow ( rCBF ) responses during cognitive testing. We hypothesized that BP would be negatively related to cognitive performance and that cognitive performance would also be related to rCBF responses within areas related to BP control. We explored whether deficits related to systolic BP might be explained by rCBF responses to mental challenge. Methods and Results Healthy midlife participants (n=227) received neuropsychological testing and performed cognitive tasks in a magnetic resonance imaging scanner. A pseudocontinuous arterial spin labeling sequence assessed rCBF in brain areas related to BP in prior studies. Systolic BP was negatively related to 4 of 5 neuropsychological factors (standardized β&gt;0.13): memory, working memory, executive function, and mental efficiency. The rCBF in 2 brain regions of interest was similarly related to memory, executive function, and working memory (standardized β&gt;0.17); however, rCBF responses did not explain the relationship between resting systolic BP and cognitive performance. Conclusions Relationships at midlife between prehypertensive levels of systolic BP and both cognitive and brain function were modest but suggested the possible value of midlife intervention. </jats:sec

    Plasma arginine vasopressin concentrations in epileptics under monotherapy

    Get PDF
    Plasma arginine vasopressin concentrations were determined by radio-immunoassay in 112 adult epileptics who were taking carbamazepine, phenytoin, primidone, or sodium valproate in long-term monotherapy, and in 19 controls. No significant difference was found between the groups, but some epileptics taking carbamazepine and primidone showed low values. Serum concentrations of carbamazepine did not correlate with the concentrations of plasma arginine vasopressin. In conclusion, there was no evidence of a stimulating effect of chronic carbamazepine medication or a special inhibiting effect of phenytoin on the release of vasopressin arginine from the posterior pituitary

    Coherent and incoherent atomic scattering: Formalism and application to pionium interacting with matter

    Get PDF
    The experimental determination of the lifetime of pionium provides a very important test on chiral perturbation theory. This quantity is determined in the DIRAC experiment at CERN. In the analysis of this experiment, the breakup probabilities of of pionium in matter are needed to high accuracy as a theoretical input. We study in detail the influence of the target electrons. They contribute through screening and incoherent effects. We use Dirac-Hartree- Fock-Slater wavefunctions in order to determine the corresponding form factors. We find that the inner-shell electrons contribute less than the weakly bound outer electrons. Furthermore, we establish a more rigorous estimate for the magnitude of the contributions form the transverse current (magnetic terms thus far neglected in the calculations).Comment: Journal of Physics B: Atomic, Molecular and Optical Physics; (accepted; 22 pages, 6 figures, 26 references) Revised version: more detailed description of DIRAC experiment; failure of simplest models for incoherent scattering demonstrated by example

    Breit Hamiltonian and QED Effects for Spinless Particles

    Get PDF
    We describe a simplified derivation for the relativistic corrections of order α4\alpha^4 for a bound system consisting of two spinless particles. We devote special attention to pionium, the bound system of two oppositely charged pions. The leading quantum electrodynamic (QED) correction to the energy levels is of the order of α3\alpha^3 and due to electronic vacuum polarization. We analyze further corrections due to the self-energy of the pions, and due to recoil effects, and we give a complete result for the scalar-QED leading logarithmic corrections which are due to virtual loops involving only the scalar constituent particles (the pions); these corrections are of order α5lnα\alpha^5 \ln \alpha for S states.Comment: 12 pages, LaTeX; references added (J. Phys. B, in press

    Multi-omics subtyping of hepatocellular carcinoma patients using a Bayesian network mixture model

    Get PDF
    Comprehensive molecular characterization of cancer subtypes is essential for predicting clinical outcomes and searching for personalized treatments. We present bnClustOmics, a statistical model and computational tool for multi-omics unsupervised clustering, which serves a dual purpose: Clustering patient samples based on a Bayesian network mixture model and learning the networks of omics variables representing these clusters. The discovered networks encode interactions among all omics variables and provide a molecular characterization of each patient subgroup. We conducted simulation studies that demonstrated the advantages of our approach compared to other clustering methods in the case where the generative model is a mixture of Bayesian networks. We applied bnClustOmics to a hepatocellular carcinoma (HCC) dataset comprising genome (mutation and copy number), transcriptome, proteome, and phosphoproteome data. We identified three main HCC subtypes together with molecular characteristics, some of which are associated with survival even when adjusting for the clinical stage. Cluster-specific networks shed light on the links between genotypes and molecular phenotypes of samples within their respective clusters and suggest targets for personalized treatments

    Multi-omics subtyping of hepatocellular carcinoma patients using a Bayesian network mixture model

    Get PDF
    Comprehensive molecular characterization of cancer subtypes is essential for predicting clinical outcomes and searching for personalized treatments. We present bnClustOmics, a statistical model and computational tool for multi-omics unsupervised clustering, which serves a dual purpose: Clustering patient samples based on a Bayesian network mixture model and learning the networks of omics variables representing these clusters. The discovered networks encode interactions among all omics variables and provide a molecular characterization of each patient subgroup. We conducted simulation studies that demonstrated the advantages of our approach compared to other clustering methods in the case where the generative model is a mixture of Bayesian networks. We applied bnClustOmics to a hepatocellular carcinoma (HCC) dataset comprising genome (mutation and copy number), transcriptome, proteome, and phosphoproteome data. We identified three main HCC subtypes together with molecular characteristics, some of which are associated with survival even when adjusting for the clinical stage. Cluster-specific networks shed light on the links between genotypes and molecular phenotypes of samples within their respective clusters and suggest targets for personalized treatments

    Development of a Forced Oscillation System for Measuring Dynamic Derivatives of Fluidic Vehicles

    Get PDF
    A new Forced Oscillation System (FOS) has been designed and built at NASA Langley Research Center that provides new capabilities for aerodynamic researchers to investigate the dynamic derivatives of vehicle configurations. Test vehicles may include high performance and general aviation aircraft, re-entry spacecraft, submarines and other fluidic vehicles. The measured data from forced oscillation testing is used in damping characteristic studies and in simulation databases for control algorithm development and performance analyses. The newly developed FOS hardware provides new flexibility for conducting dynamic derivative studies. The design is based on a tracking principle where a desired motion profile is achieved via a fast closed-loop positional controller. The motion profile for the tracking system is numerically generated and thus not limited to sinusoidal motion. This approach permits non-traditional profiles such as constant velocity and Schroeder sweeps. Also, the new system permits changes in profile parameters including nominal offset angle, waveform, and associated parameters such as amplitude and frequency. Most importantly, the changes may be made remotely without halting the FOS and the tunnel. System requirements, system analysis, and the resulting design are addressed for a new FOS in the 12-Foot Low-Speed Wind Tunnel (LSWT). The overall system including mechanical, electrical, and control subsystems is described. The design is complete, and the FOS has been built and installed in the 12-Foot LSWT. System integration and testing have verified design intent and safe operation. Currently it is being validated for wind-tunnel operations and aerodynamic testing. The system is a potential major enhancement to forced oscillation studies. The productivity gain from the motion profile automation will shorten the testing cycles needed for control surface and aircraft control algorithm development. The new motion capabilities also will serve as a test bed for researchers to study and to improve and/or alter future forced oscillation testing techniques

    Feasibility of free space quantum key distribution with coherent polarization states

    Full text link
    We demonstrate for the first time the feasibility of free space quantum key distribution with continuous variables under real atmospheric conditions. More specifically, we transmit coherent polarization states over a 100m free space channel on the roof of our institute's building. In our scheme, signal and local oscillator are combined in a single spatial mode which auto-compensates atmospheric fluctuations and results in an excellent interference. Furthermore, the local oscillator acts as spatial and spectral filter thus allowing unrestrained daylight operation.Comment: 12 pages, 8 figures, extensions in sections 2, 3.1, 3.2 and 4. This is an author-created, un-copyedited version of an article accepted for publication in New Journal of Physics (Special Issue on Quantum Cryptography: Theory and Practice). IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from i

    Restructuring of colloidal aggregates in shear flow: Coupling interparticle contact models with Stokesian dynamics

    Full text link
    A method to couple interparticle contact models with Stokesian dynamics (SD) is introduced to simulate colloidal aggregates under flow conditions. The contact model mimics both the elastic and plastic behavior of the cohesive connections between particles within clusters. Owing to this, clusters can maintain their structures under low stress while restructuring or even breakage may occur under sufficiently high stress conditions. SD is an efficient method to deal with the long-ranged and many-body nature of hydrodynamic interactions for low Reynolds number flows. By using such a coupled model, the restructuring of colloidal aggregates under stepwise increasing shear flows was studied. Irreversible compaction occurs due to the increase of hydrodynamic stress on clusters. Results show that the greater part of the fractal clusters are compacted to rod-shaped packed structures, while the others show isotropic compaction.Comment: A simulation movie be found at http://www-levich.engr.ccny.cuny.edu/~seto/sites/colloidal_aggregates_shearflow.htm

    Does the Constitution Provide More Ballot Access Protection for Presidential Elections Than for U.S. House Elections?

    Get PDF
    Both the U.S. Constitution and The Federalist Papers suggest that voters ought to have more freedom to vote for the candidate of their choice for the U.S. House of Representatives than they do for the President or the U.S. Senate. Yet, strangely, for the last thirty-three years, the U.S. Supreme Court and lower courts have ruled that the Constitution gives voters more freedom to vote for the candidate of their choice in presidential elections than in congressional elections. Also, state legislatures, which have been writing ballot access laws since 1888, have passed laws that make it easier for minor-party and independent candidates to get on the ballot for President than for the U.S. House. As a result, voters in virtually every state invariably have far more choices on their general election ballots for the President than they do for the House. This Article argues that the right of a voter to vote for someone other than a Democrat or a Republican for the House is just as important as a voter’s right to do so for President, and that courts should grant more ballot access protection to minor-party and independent candidates for the House
    corecore