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Abstract
Comprehensive molecular characterization of cancer subtypes is essential for predicting clinical
outcomes and searching for personalized treatments. We present bnClustOmics, a statistical
model and computational tool for multi-omics unsupervised clustering, which serves a dual
purpose: Clustering patient samples based on a Bayesian network mixture model and learning
the networks of omics variables representing these clusters. The discovered networks encode
interactions among all omics variables and provide a molecular characterization of each patient
subgroup. We conducted simulation studies that demonstrated the advantages of our approach
compared to other clustering methods in the case where the generative model is a mixture of
Bayesian networks. We applied bnClustOmics to a hepatocellular carcinoma (HCC) dataset
comprising genome (mutation and copy number), transcriptome, proteome, and
phosphoproteome data. We identified three main HCC subtypes together with molecular
characteristics, some of which are associated with survival even when adjusting for the clinical
stage. Cluster-specific networks shed light on the links between genotypes and molecular
phenotypes of samples within their respective clusters and suggest targets for personalized
treatments.

Author summary
Multi-omics approaches to cancer subtyping can provide more insights into molecular changes 1

in tumors compared to single-omics approaches. However, most multi-omics clustering methods 2

do not take into account that gene products interact, for example, as parts of protein complexes 3

or signaling networks. Here we present bnClustOmics, a Bayesian network mixture model for 4

unsupervised clustering of multi-omics data, which can represent dependencies among 5

molecular changes of various omics types explicitly. Unlike other approaches that use data from 6

public interaction databases as ground truth, bnClustOmics learns the dependencies between 7

genes from the analyzed multi-omics dataset. At the same time, our approach can also account 8

for prior knowledge from public interaction databases and use it to guide network learning 9

without losing the ability to learn new dependencies. We applied bnClustOmics to a multi-omics 10

HCC dataset and identified three subtypes similar to those identified in other HCC studies. The 11

cluster-specific networks learned by bnClustOmics revealed additional insights into the 12

molecular characterization of the discovered subgroups and highlighted the changes in signaling 13

networks leading to distinct HCC phenotypes. 14

Introduction 15

Cancer is a complex disease and one of the leading causes of death worldwide. Over the last 16

decades, much research was devoted to discovering cancer subtypes based on genomic and 17

transcriptomic data [1–3]. Molecular subtyping approaches based on gene expression have been 18

helpful for the identification of markers associated with clinical outcomes and facilitated the 19

search for targeted therapies [4, 5]. More recently, cancer subtyping has been based on 20

integrating multiple different omics types [6–9]. Multiple tools have been developed to integrate 21

multi-omics data and learn interaction networks to understand what drives oncogenesis [10, 11]. 22

However, our understanding of how heterogeneous genetic alterations in cancer cells affect 23

signaling pathways and lead to a few disease phenotypes is still far from complete [12, 13]. One 24

major obstacle is the missing connection between methods for network discovery and approaches 25

to molecular subtyping. Almost all existing methods focus on only one of these two tasks. 26

Only a few multi-omics clustering methods include interactions between gene products into 27

the model explicitly. Some of them are designed for single omics types [14, 15] or use a 28

supervised approach for clustering [16]. PARADIGM [17] and BiCON [18] unsupervised 29
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clustering (of patient samples) while accounting for the fact that genes products can interact with 30

each other and that interactions may differ between patient groups. However, these methods rely 31

entirely on existing protein-protein interaction (PPI) databases and consider them as ground truth. 32

Instead of learning the network from the dataset, they map the omics data onto interactions from 33

existing databases by considering pairwise dependencies between genes. Such approaches are 34

prone to mistakes contained in databases and do not allow the discovery of unknown interactions. 35

When learning gene regulatory networks, the Bayesian network framework is often used 36

instead of pairwise correlation analysis since it can uncover direct interactions and, in some 37

cases, learn their directions [19, 20]. A Bayesian network mixture model was used for clustering 38

of pan-cancer mutation data [14], but never applied to any other omics types or integrated 39

multi-omics model for unsupervised clustering. 40

Here, we extend the model of Kuipers et al. [14] to multi-omics data comprising discrete and 41

continuous data types. We present bnClustOmics, an unsupervised clustering method based on 42

the assumption that the cancer subtype can be represented as a Bayesian network consisting of 43

omics variables of various types. Our model reflects the consensus view of cancer mechanisms, 44

in which genetic alterations disrupt normal cell signaling and activate oncogenic pathways. 45

Biological experiments have shown that mutations in cancer cells result in altered interactions 46

between proteins, including phosphoproteins [21]. Thus, modeling the subtype-specific changes 47

in the interactome may improve the clustering model. With cancer subtypes being modeled as 48

Bayesian networks, bnClustOmics can detect the signal from interactions that differ in networks 49

representing different subtypes. A major advantage of bnClustOmics compared to other methods 50

for multi-omics clustering is that the output includes networks (learned de novo) representing 51

discovered clusters which can be considered further in downstream analyses and shed light on 52

subtype-specific cancer mechanisms. 53

We demonstrated in simulation studies that many commonly used clustering methods, 54

including those specifically designed for multi-omics data, have a limited ability to detect a 55

signal from changed interactions, whereas the ability of bnClustOmics to do so improves its 56

clustering accuracy. In particular, we compared traditional clustering approaches with three 57

different approaches designed for multi-omics data. Among multi-omics approaches, we 58

selected methods that demonstrated good performance in previous benchmarking studies [6, 22]. 59

iClusterPlus [23] assumes that only a limited number of features are relevant and uses 60

regularization to select features, while CIMLR [24] can incorporate the complete genome 61

without enforcing sparsity. CIMLR was expected to perform better in a broad range of settings 62

due to its claimed ability to learn the importance of different omics types from the analyzed 63

dataset [24], however Duan et al. reported controversial results in this regard [22]. We also 64

added MOFA [25] to benchmarking since it demonstrated good results with regard to feature 65

selection in our simulations. bnClustOmics is only feasible for a limited number of omics 66

features, hence the importance of each omics type is implicitly affected by the feature selection 67

method. We tried several approaches to select relevant features and compared the performance 68

of bnClustOmics using a selected subset to all other clustering methods applied to a non-reduced 69

set. 70

We applied bnClustOmics to a multi-omics dataset from hepatocellular carcinoma (HCC) 71

patient biopsies [26]. HCC is the most common type of primary liver cancer, which is the fourth 72

most common cause of cancer-related mortality worldwide [27]. We discovered three clusters of 73

HCC patients based on five omics types: mutations and copy number changes (both genome), 74

transcriptome, proteome, and phosphoproteome. The number and molecular characteristics of 75

the three discovered groups confirm many findings from previous HCC studies, including an 76

analysis of the same HCC dataset [26]. In addition to cluster assignments, we analyzed the 77

cluster-specific networks learned by bnClustOmics and scrutinized specific edges which connect 78

changes in the genome to abnormal expression of transcripts, proteins, and phosphorylation sites. 79

Furthermore, we identified hub nodes, i.e. genes with the most stable and most varying 80

neighbors across cluster-specific networks based on the posterior probabilities of the edges. 81
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Cluster-specific connections between omics variables provide insights into the molecular 82

characteristics underlying HCC subtypes and suggest targets for personalized therapies. 83

1 Results and Discussion 84

1.1 Model and workflow 85

We model a cancer subtype as a Bayesian network, whose nodes represent different omics 86

measurements of the same set of genes. The HCC dataset [26] includes five omics types, namely 87

mutations and copy number changes (both genome, denotedM and CN), transcriptome (T ), 88

proteome (P ), and phosphoproteome (PP ). The edges in the network represent statistical 89

dependencies among all observations across all omics types. Such dependencies are not limited 90

to a single biological interpretation. For example, an edge in the network might represent a 91

physical interaction between proteins, a regulatory relationship between a transcription factor 92

and its target, a functional interaction or a co-expression pattern. A functional interaction 93

denotes an indirect association where two gene products do not physically interact but are jointly 94

involved in the same cellular process [28]. 95

By design, our integrative model prohibits any edges from nodes of continuous data types (T , 96

P , PP ) to nodes of binary or ordinal data types (M , CN). Prohibiting interactions between 97

certain omics types avoids overfitting and results in more interpretable networks. We only allow 98

edges aligned with the information flow of the central dogma of molecular biology [29]. 99

Fig 1. Bayesian network-based clustering workflow. Multiple omics types, both binary and
continuous, are allowed as input data types (left). After feature selection is performed, prior
knowledge about interactions between nodes can be included via blacklisting and penalization
matrices (middle). bnClustOmics performs unsupervised clustering based on the selected
features, blacklist, and penalization matrices. The output (right) includes cluster assignments
(encircled patient sample), cluster-specific networks, and posterior probabilities of all individual
edges in these graphs. Here, three patient clusters are depicted and labeled ⚫, ▴, and ◼.

At the first step of the analysis, we perform feature selection from all features of all available 100

omics types (Fig 1). To analyze the HCC dataset, we selected features based on multi-omics 101

factor analysis (MOFA, [25]) latent factor analysis, differential gene expression (DGE) analysis, 102

and prior knowledge about signaling networks (Section 2.13). 103

bnClustOmics uses a Bayesian network mixture model and employs the EM algorithm [14] 104

to cluster patient samples and learn the networks representing those clusters. Unlike other 105
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multi-omics clustering methods, bnClustOmics does not rely on interactions from databases, but 106

learns Bayesian networks from data de novo using a Bayesian approach [14, 30, 31]. However, it 107

is possible to construct blacklist and penalization matrices that incorporate prior information 108

about interactions between selected features and guide network learning in subsequent steps. In 109

the extreme case, we could blacklist all edges which are not found in a specific database. 110

However, blacklisting prevents the discovery of new interactions. Instead, we can use 111

edge-specific penalization factors to modify the prior probability distribution of the graph 112

structure and lower the probability of such edges appearing in the resulting graphs. The 113

penalization matrix also provides an easy way to incorporate a confidence score which is often 114

assigned to interactions in the PPI databases. 115

bnClustOmics takes as input the observed values of the selected omics features for all 116

patients, the number of clusters, and optional blacklist and penalization matrices. As output, we 117

obtain cluster assignments for all patient samples, cluster-specific networks consisting of omics 118

variables, and the log-likelihood, AIC and BIC scores of the estimated model. The AIC and BIC 119

can be used to determine the optimal number of clusters. In addition, the Bayesian method used 120

for structure learning provides estimates of posterior probabilities of all edges in the discovered 121

networks. The statistical model presented in this work is implemented in the R package 122

bnClustOmics and available at the GitHub repository 123

https://github.com/cbg-ethz/bnClustOmics. 124

1.2 Benchmarking 125

We compared the performance of several clustering algorithms to bnClustOmics when the data 126

generating model is a mixture of Bayesian networks. For comparison, we selected several 127

general clustering methods as well as methods specifically designed for integration and 128

clustering of multi-omics data, including kmeans [32], hclust [32], mclust [33], 129

iClusterPlus [23], CIMLR [24], and MOFA [25]. 130

For each set of simulation settings, we generated 30− 50 Bayesian network mixtures (Section 131

2.2), where each directed acyclic graph (DAG) Gk consists of nc Gaussian and nb Bernoulli 132

random variables (S1 Appendix). We used the adjusted Rand index (ARI, [34]) between 133

estimated cluster assignments and the ground truth membership as a measure of accuracy. 134

For large sample sizes, bnClustOmics reaches a high accuracy even in a setting where the 135

difference between cluster centers is small (Fig 2A), while the other algorithms fail to discover 136

cluster assignments when cluster centers are very close to each other. Accuracy improves when 137

the distances between centers of mixture components become larger for all algorithms except 138

CIMLR. In our simulation settings, CIMLR failed to detect the signal from the continuous nodes 139

in the presence of binary nodes. When we removed binary nodes from the simulated datasets 140

and applied CIMLR to the continuous part only, its accuracy improved considerably. 141

For small sample sizes, all methods demonstrate lower clustering accuracy (Fig 2B), and 142

bnClustOmics outperforms the other approaches in the majority of cases. We attribute this 143

outperformance to the ability of bnClustOmics to detect the signal not only from differences 144

between cluster centers but also structural differences between graphs representing clusters. 145

Next, we fix the distance between the centers of the distributions at a medium value and 146

analyze the performance of different algorithms with four different values K of the number of 147

clusters. The clustering accuracy of bnClustOmics does not become worse with increasing 148

number of clusters K , while for the other algorithms, the accuracy decreases (Fig 2C). Among 149

the other algorithms, CIMLR applied to only a continuous part of the data performs the best. 150

However, its accuracy is again substantially worse when the binary data is included. 151

Since bnClustOmics is only computationally feasible for networks with a limited number of 152

nodes, its performance may strongly depend on the selection of the relevant features. To assess 153

whether reducing the number of features affects the clustering accuracy of bnClustOmics, we 154

generated Bayesian network mixtures with nc = 1000 Gaussian nodes and nb = 100 binary 155
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Fig 2. Benchmarking of algorithms for unsupervised clustering of multi-omics data. 50
Bayesian network mixtures were generated for each simulation setting. For general clustering
approaches, the dimension was reduced by applying PCA and running clustering on the first 5
principal components. All integrative multi-omics approaches were applied to the original data
unless specified otherwise. CIMLRco denotes clustering results of the application of CIMLR to
a subset of data consisting of observations of only continuous variables. NZk denotes thenumber of observations in one cluster, K the number of clusters, nc number of continuous nodes,
nb number of binary nodes in networks. (A) K = 3, nc = 100, nb = 20,NZk = 200 (B) K = 3,
nc = 100, nb = 20,NZk = 20 (C) nc = 100, nb = 20,NZk = 20, K ∈ {3, 5, 7, 9}, distance
between centers set to medium (D) K = 3, nc = 1000, nb = 100,NZk = 20 bnClustOmics was
applied to a subset of data consisting of all binary nodes with non-zero standard deviation and
150 selected continuous nodes.

nodes from K = 3 mixture components and applied all clustering approaches to this dataset. All 156

algorithms were applied to the complete dataset, except bnClustOmics which was applied to only 157

a subset of the data consisting of 150 continuous features (S2 Appendix) and all binary features 158

with at least one non-zero observation. We found that despite using significantly fewer variables, 159

bnClustOmics outperforms the other methods (Fig 2D) when the distances between cluster 160

centers are medium to large. For small distances, all methods perform poorly. 161

So far, we assumed that the number of clusters is known; however, in a fully unsupervised 162

setting, this is not the case. bnClustOmics allows estimating the number of clusters K using 163

either the AIC or BIC score. Our simulations indicate that for small sample size, AIC works 164

better (Fig 3A), while for large sample size, BIC shows better results (Fig 3B). 165

Next, we tested the ability of bnClustOmics to reconstruct Bayesian networks representing 166

discovered clusters. We generated 50 Bayesian network mixtures with K = 4 components and 167

unequal weights, such that the four clusters contain 150, 100, 50, and 20 observations, 168

respectively. The Bayesian approach yields estimated maximum a posteriori (MAP) structures, 169
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i.e. graphs which have the highest scores of all considered structures and represent the best fit to 170

the data. In addition to MAP graphs, we also estimated the consensus structures (Section 2.5), 171

which consist of edges whose posterior probabilities are higher than a certain threshold. 172

Fig 3. Defining the optimal number of clusters and structure fit. 30 Bayesian network
mixtures were generated for each number of clusters K ∈ {3, 5, 7, 9} (ground truth).
bnClustOmics was applied for each estimated K ∈ {1, ..., 11} to each generated dataset and K̂
was determined by minimizing the AIC or BIC score. (A)NZk = 20 (B)NZk = 200 (C) 50datasets were generated from Bayesian network mixtures consisting of K = 4 components with
number of observationsNZk ∈ {150, 100, 50, 20} corresponding to cluster 1 (red), cluster 2
(green), cluster 3 (turquoise) and cluster 4 (violet). To construct the penalization matrix (prior),
we first defined the edges representing interactions from databases by taking the union of all
edges in the ground truth structures. Afterward, we removed 5% of these edges, modeling
false-negative interactions in databases, and added 5% of false positives. The entries of the
penalization matrix corresponding to the defined set were not penalized; all other edges were
penalized by a factor of two. The simulated datasets were clustered using bnClustOmics with
and without the penalization matrix. Resulting MAP and consensus models corresponding to
posterior thresholds of p ∈ {0.3, 0.5, 0.7, 0.9, 0.95, 0.99} were assessed using TPR and FDR.

The number of observations per cluster correlates positively with the accuracy of the learned 173

MAP structures, as progressively higher TPR and lower FDR levels were reported for MAP 174

structures corresponding to a higher number of observations (Fig 3C). However, the FDR of 175

MAP structures is rather high, especially for the cluster 4 with the smallest number of 176

observations. We observe that consensus graphs help reduce FDR compared to the MAP 177

estimates, although at the cost of reducing the true positive rate (TPR). The structural Hamming 178

distance (SHD) is smaller for consensus structures than for MAP structures (S1 Fig). In our 179

simulation, a posterior threshold of 0.7 minimizes the SHD forNZk ∈ {150, 100, 50} and 0.95 180

forNZk = 20. 181

The Bayesian approach allows us to include prior knowledge about known interactions and 182

guide de novo network learning. In the analysis of mutation data, an edge penalization matrix 183

was used by Kuipers et al. [14] to include prior information from the database STRING [35]. 184

The edge penalization matrix is used to modify the prior over structures, such that penalized 185

edges have a lower chance to appear in the discovered graphs (Section 2.9). PPI databases 186

contain known interactions between genes but most often do not describe the context in which a 187

particular interaction occurs. Hence, if interactions differ between unknown cancer subtypes, we 188

cannot learn them using a database alone. To assess to which extent the penalization matrix can 189

improve network discovery, we constructed a simulated database of interactions by taking the 190
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union of all edges in the ground truth structures and introducing 10% of mistakes which model 191

false-positive (5%) and false-negative (5%) interactions in databases. The entries of the 192

penalization matrix corresponding to interactions from the simulated database were not 193

penalized; all other edges were penalized by a factor of two. 194

The usage of an edge penalization matrix resulted in MAP and consensus structures 195

containing fewer false-positive edges and more true positives than corresponding structures 196

obtained without using a penalization matrix (Fig 3C). Limited sample size is a common 197

problem of biological data, and proteome and phosphoproteome data are generally scarce. At the 198

same time, extensive databases exist which include known protein-protein interactions and 199

regulatory relationships identified in biological or computational studies. Hence, including 200

information from such databases can be helpful for network reconstruction. 201

1.3 HCC patient subtyping 202

We analyzed the HCC multi-omics dataset [26] comprising 50 biopsies from 48 patients and 203

including five omics types, namely mutations and CNAs (both genome), transcriptome, 204

proteome, and phosphoproteome. In order to apply bnClustOmics, we first performed feature 205

selection as follows. To selectM features, we used a list of significantly mutated genes in the 206

analyzed cohort identified by Ng et al. [26]. In addition, we included possible drivers of HCC 207

identified in other studies [36–38]. To select continuous features, we applied MOFA and 208

performed latent factor analysis. In addition, we included the P and PP features, which are 209

differentially expressed/phosphorylated in tumor samples and either are present in the 210

kinase-substrate database, or are known transcription factors according to the Omnipath 211

database [39] (Section 2.10). We proceeded with the construction of the blacklist and 212

penalization matrices as described in Section 2.8 and Section 2.9 and included prior information 213

about interactions between selected features from the STRING and Omnipath databases [35, 39]. 214

We ran the algorithm for K = 1, 2, 3, 4, and 5 clusters. The BIC and AIC scores indicated 215

K = 3 as the optimal number of clusters (Fig 4A). K = 3 clusters were also found as optimal for 216

the same data in [26] and in another HCC study applying a network-based method to the TCGA 217

HCC dataset [40]. Similar to the clusters discovered in [26], the clusters discovered by 218

bnClustOmics (Fig 4D) are associated with mutations in the genes TP53 and CTNNB1, 219

Edmondson grade, and BCLC stage (p-values using Fisher’s exact test are 0.012, 0.001, 0.007, 220

and 0.019, respectively). Cluster 1 is dominated by samples with mutations in CTNNB1, and 221

cluster 2 is dominated by samples with mutations in TP53 (Fig 4C). Cluster 3 is the most 222

heterogeneous in terms of mutations. However, all 4 samples with mutations in ALB are in 223

cluster 3. 224

The three discovered subgroups are associated with patient survival with and without 225

adjustment for BCLC stage (S2 Fig, Section 2.11). In particular, the Cox proportional hazards 226

model revealed that cluster 2 is associated with a poor prognosis (p = 0.039 for the non-adjusted 227

model and p = 0.024 for the adjusted model), while survival prognoses for cluster 1 and 228

cluster 3 are better and similar. We tested several other approaches for multi-omics clustering, 229

including MOFA, which we used for feature selection. None of the models produced patient 230

subgroups significantly associated with survival when adjusting for BCLC stage (S1 Table, 231

Survival analysis). 232

To identify processes whose regulation is different between the three patient clusters, we 233

performed DGE and pathway enrichment analysis (Section 2.12). The differences in enriched 234

pathways at all omics levels are more pronounced between cluster 2 and the other clusters 235

(Fig 4D). Significant differences in enriched pathways between cluster 1 and cluster 3 were 236

identified only at the transcriptome level, but not the proteome or phosphoproteome level. 237

However, this situation can result from a combination of noisy data and limitations of pathway 238

enrichment analysis [41]. 239

In order to extend the molecular characterization of the discovered clusters beyond 240
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Fig 4. Multi-omics clustering of the HCC dataset with bnClustOmics. (A) BIC and AIC
scores of models with different numbers of clusters. (B) Kaplan-Meier survival curves for
patients in discovered clusters. (C) Mutational frequencies in discovered clusters. Only
mutations with frequency ≥ 15% in at least one of the clusters are shown. (D) Pathway
enrichment differences between clusters. (E) Venn diagrams showing the number of common
and cluster-specific edges in the discovered MAP and consensus networks learned for cluster 1
(red), cluster 2 (green), cluster 3 (blue); edge directions were disregarded.

expression levels and mutational frequencies, we analyzed the multi-omics networks that define 241

the clusters. The three MAP networks are very different from each other (Fig 4E). At the same 242

time, the similarities between consensus networks constructed at the edge-wise posterior level of 243

0.1 are substantially larger (Section 2.5). While 0.1 is a low confidence threshold, the proportion 244

of edges that pass this threshold is around 2% of all non-blacklisted edges for each network. 245

Therefore, the high degree of similarity at the 0.1 level suggests that the posterior landscapes are 246

not as different as the MAP structures. This reflects a high level of modeling uncertainty due to 247

the small effective sample sizes from which the networks were learned. The downside of MAP 248

structures is the inability to account for this uncertainty which can lead to overfitting, as we have 249

seen in simulation studies (Fig 3C). 250

To address this limitation, we took advantage of the Bayesian approach that we used for 251

structure learning and using several posterior thresholds constructed consensus networks for 252

downstream analysis (Section 2.5). 253

1.4 Downstream effects of mutated genes 254

bnClustOmics allows for identifying links between genotypes and molecular characteristics of 255

individual clusters. We analyzed all children ofM (mutation) nodes in the cluster-specific 256

networks. At the first step, we performed pathway enrichment analysis and identified KEGG 257
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pathways that are enriched with cluster-specific children of mutation nodes (S2 Table). 258

Signaling pathways associated with HCC, including PIK3-Akt, p53 and cell cycle, were enriched 259

in all clusters. The differences in enriched pathways between the clusters can be connected to 260

their genotypes. For example, the Wnt signaling pathway, whose activation is usually associated 261

with mutations in CTNNB1 is enriched in cluster 1 and cluster 3 but not in cluster 2. Network G3 262

is characterized by more connections than other networks due to a higher level of heterogeneity 263

in cluster 3. As a result, more pathways were found to be enriched with direct neighbors ofM 264

nodes. 265

We further scrutinized the individual edges connecting mutations to the nodes representing 266

genes products of other omics types. To find the connections which can explain the abnormal 267

expression of T , P and PP nodes, we have selected children of all mutation nodes in all 268

networks which are differentially expressed in at least one cluster or in the whole dataset (Fig 5). 269

The frequently mutated genes TP53, CTNNB1, and ARID1A have the most children across 270

networks. However, CTNNB1 has the largest proportion of children that are the same across the 271

clusters, whereas the children of ARID1A are rather different across the clusters. This suggests 272

that the effects of mutations in CTNNB1 are more homogeneous, while effects of ARID1A are 273

more heterogeneous across clusters. ARID1A is a sub-unit of chromatin remodeling complex 274

SWI/SNF and may have broad effects on gene expression levels. Heterogeneous roles of 275

ARID1A in HCC were already pointed out in previous studies [42]. In particular, ARID1A was 276

found to act both as a tumor suppressor and oncogene depending on the context. 277

We noted that bnClustOmics was able to capture some of the well-known HCC-specific 278

interactions while performing de novo clustering. One example of homogeneous connections is 279

the edge from mutation in CTNNB1 (denoted CTNNB1-M) to the CTNNB1 transcript abundance 280

(CTNNB1-T ). In all clusters, the mutation status of CTNNB1 is positively correlated with the 281

expression of the CTNNB1 transcript. In cluster 1 and cluster 3, CTNNB1-T is overexpressed 282

compared to normal samples. This corresponds to the known effects of CTNNB1 mutations in 283

HCC [43]. However, in cluster 2, CTNNB1-T is not overexpressed, despite the edge between 284

CTNNB1-M and CTNNB1-T . This situation results from cluster 2 containing only two samples 285

with mutated CTNNB1 and the fact that mutations in TP53 are not associated with increased 286

CTNNB1-T . This example demonstrates the complementary roles of network analysis with DGE 287

in the downstream analysis. 288

The edge from CTNNB1-M to GLUL-T which is present in G2 and G3 is another example of 289

a previously known interaction. GLUL is known to be upregulated in HCC and is associated 290

with the mutated CTNNB1. It is also known that GLUL is affected by activation of the 291

Wnt/�-catenin pathway at the transcription level, so the incoming edges in the GLUL-T node are 292

consistent with previous findings [44]. Interestingly, there is no edge connecting CTNNB1-M 293

and GLUL-T in G1. If we examine the interaction partners of GLUL-T (Fig 6A), there is an 294

incoming edge that is specific to G1 coming from the phosphorylation site AXIN2_S70, and 295

AXIN2_S70 has an incoming edge from CTNNB1 also only in G1. AXIN2, just like GLUL, is a 296

known target of the Wnt/�-catenin pathway [45]. The link between proteins GLUL and AXIN2 297

is also present in the STRING database with an interaction score of 0.42. The phosphorylation 298

site AXIN2_S70 has been mentioned in the study connecting mutations to signaling in breast 299

cancer [46]; however, there have been no previous studies about this phosphorylation site in 300

HCC. Thus, the different path from CTNNB1-M to GLUL in G1 compared to G2 and G3 may 301

represent differences in signaling leading to the same target. Alternatively, due to a limited 302

number of observations, we may have captured the same process with a different set of edges, so 303

further experiments are needed to clarify this link. 304

In addition to edges corresponding to known interaction contexts, bnClustOmics discovered 305

edges pointing at new context-specific dependencies. Cluster 2 is characterized by mutations in 306

the TP53 gene, and we analyzed TP53-M connections which might contribute to the phenotype 307

of cluster 2 (S8 Appendix). The transcript node TERT-T is differentially expressed in cluster 2 308

and also has an incoming edge from TP53-M in G2. TERT-T expression is known to be 309

December 20, 2021 9/40

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 21, 2021. ; https://doi.org/10.1101/2021.12.16.473083doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.16.473083
http://creativecommons.org/licenses/by/4.0/


Fig 5. Mutated genes and their most common interaction partners in HCC networks
learned by bnClustOmics. Only those T , P , and PP nodes are shown that are differentially
expressed/phosphorylated in at least one cluster or the whole dataset. Edges are shown based on
their posterior probability: either if they have a high total posterior probability (sum across
clusters is at least 1.2), or if they have a high posterior probability in at least one of the clusters
(p > 0.9). Edge colors indicate in which cluster-specific networks the edges are present with a
posterior probability p > 0.4: red(G1), green(G2), blue (G3), brown (G1 and G2), violet (G1 and
G3), turquoise (G2 and G3), black (G1 and G2 and G3). Border colors of T , P , and PP nodes
represent the differential expression status (color scheme is the same as edge colors). Solid
edges denote either connections between two omics types of the same gene or interactions found
in the STRING and Omnipath databases.

upregulated in many cancers including HCC [47] and it is also significantly overexpressed in all 310

clusters in the analyzed cohort. However, the expression level of TERT-T is significantly higher 311

in cluster 2 than in cluster 1 and cluster 3 (Figure 9 in S8 Appendix). The high degree of 312

TERT-T overexpression is associated with mutations in TP53 as suggested by G2. At the same 313

time, the edge from TP53-M to TERT-T is absent in G1 and G3 (Figure 8 in S8 Appendix), 314
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suggesting that the effect of mutated TP53 on TERT-T is only present in cluster 2. 315

We investigated connections of TERT-T in other networks to identify possible sources of its 316

upregulation in remaining clusters (Fig 6B). There is an incoming edge from ALB-M in G3; 317

however, it is negatively correlated with TERT-T expression, so mutations in ALB-M do not 318

seem to contribute to TERT-T overexpression. In addition, there is a G3-specific incoming edge 319

from the phosphorylation site RB1_S37, which is overexpressed in cluster 2 and cluster 3, but 320

not in cluster 1. Network G3 suggests that RB1_S37 is associated with overexpression of 321

TERT-T and hence might also contribute to carcinogenesis. In G3, there is an incoming edge to 322

RB1_S37 from CTNNB1-M and the corresponding correlation is positive. This suggests that 323

CTNNB1-M contributes to RB1_S37 overexpression and via RB1_S37 may affect TERT-T as 324

well. However, this dependency is not direct and weaker than the edge from TP53-M to 325

TERT-T in cluster 2, suggesting that the direction of the effect of mutations in CTNNB1 and 326

TP53 on the expression of TERT is the same, but the effect size is different. This finding aligns 327

with the associations between mutations in CTNNB1 and TP53 and survival. Both mutated genes 328

are drivers of HCC however, TP53 results in a poorer prognosis than CTNNB1. 329

Other RB1 phosphorylation sites, namely S249 and T356, are highly phosphorylated across 330

all clusters. Moreover, we observe several incoming edges fromM nodes in all RB1 331

phosphorylation sites (Fig 6C:E). The mutation statuses of parent nodes of RB1 (FAT4-M in 332

cluster 2, TERT-M in cluster 3, TP53-M in cluster 1) are positively correlated with increased 333

phosphorylation of the respective sites, suggesting that they all may contribute to RB1 334

Fig 6. Neighborhoods of individual nodes in the networks learned by bnClustOmics.
Direct neighbors of nodes (A) GLUL-T (B) TERT-T (C) RB1-S37 (D) RB1_T356 (E)
RB1-S249 (F) MAPK1_T185 in multi-omics networks discovered by bnClustOmics.
Interactions are only shown between the central node and all of its direct neighbors with
exception of (A) where we also show the connection between CTNNB1-M and AXIN2_S70.
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hyperphosphorylation. In previous studies, RB1 has been shown to play an important but 335

complex role in cell cycle regulation and apoptosis [48]. It can act both as a tumor suppressor 336

and oncogene depending on its phosphorylation status. All three phosphorylation sites included 337

in our network can be found in the PhosphoSitePlus database [49]. The role of S249 and T356 338

phosphorylation is well studied and known to affect the cell cycle and apoptosis. The role of S37 339

phosphorylation is less well known, and there are no studies about its role in HCC. As previously 340

noted, our analysis suggests that phosphorylation of this site may also play a role in HCC. We 341

note that RB1-T is also overexpressed. However, there are no edges between RB1-T and RB1 342

phosphorylation sites (S3 FigB), suggesting that overexpression of RB1-T is not the main source 343

of RB1 hyperphosphorylation. In addition, since unphosphorylated RB1 acts as a tumor 344

suppressor, knocking it down does not seem wise. Many efforts rather target inhibiting its 345

phosphorylation and activating its tumor-suppressive properties [48, 50]. Furthermore, Indovina 346

et al. [48] mention Cdk inhibitors as possible therapies which can prevent RB1 phosphorylation. 347

Indeed, Ng et al. [26] found an association of overactive CDK1/CDK2/CDK5 kinases and the 348

phenotype associated with mutations in TP53. The central role of phosphorylation of RB1 in all 349

networks suggests that inhibition of Cdk can be beneficial for patients in all clusters. 350

Many of the edges in discovered networks are absent in the public PPI databases. The edge 351

from TP53-M to LECT2-T is present in G3, and TP53-M is negatively correlated with 352

LECT2-T in this cluster (it is also negatively correlated with LECT2-T in G2, but this edge has a 353

low posterior probability). We note that LECT2-T is also downregulated in cluster 2 and 354

cluster 3, but not in cluster 1. The downregulation of LECT2-T has been previously associated 355

with a poor prognosis in HCC and mutations in TP53 [51]. Thus, the discovered link between 356

mutations in TP53-M and downregulation of LECT2-T is plausible, despite being absent in the 357

STRING database. We further noted that LECT2-M has an incoming edge from TCHH-M in 358

both G2 and G3, while TCHH mutations are absent in cluster 1. BothM nodes are negatively 359

correlated with LECT2-T suggesting that TCHH-M contributes in a similar way to the 360

molecular phenotype as TP53-M . Heterogeneity is a known issue in identifying cancer subtypes. 361

One implication of shared connections of different mutated genes in the discovered networks is 362

that they affect similar downstream genes and may be targeted by similar therapies. 363

At the same time, someM nodes have opposite effects on the same interaction partners, 364

indicating opposite effects of these corresponding mutated genes on the phenotype. TP53-M 365

and CTNNB1-M share two common connections: HDAC4_S246 and KMT2D-T . In both cases, 366

the mutation status of CTNNB1 and TP53 are oppositely correlated with their shared interaction 367

partners. The correlation between TP53-M and KMT2D-T is positive, while the correlation 368

between KMT2D-T and otherM nodes (shown in S3 FigA) including CTNNB1 is negative. In 369

pancreatic cancer, low expression of KMT2D has been associated with a better prognosis [52]. 370

Moreover, knock-out of KMT2D has been shown to attenuate cell proliferation and was 371

suggested as a therapeutic target [53]. Opposite effects of TP53-M and CTNNB1-M on 372

KMT2D-T in cluster 3 suggest that co-occurrence of these mutations may diverge the phenotype 373

from phenotypes where TP53 and CTNNB1 do not co-occur. Mutations in CTNNB1 and TP53 374

have been considered mutually exclusive in many studies [54]. However, they co-occur in 10% 375

of all samples in the analyzed dataset. The mutual exclusivity was also challenged by a study 376

presenting a detailed case of TP53/CTNNB1 co-occurrence in the same tumor [55]. In addition, 377

we observe an interesting pattern of co-occurrence of TP53 and CTNNB1 across discovered 378

clusters as four out of five co-occurrence cases fall outside of the TP53-dominated cluster 2, 379

which can also hint at possible opposite effects of mutations in TP53 and CTNNB1 on the 380

phenotype. Our findings align with another HCC classification based on morphological features 381

of the tumor and gene expression [56]. The analysis by Trobenson et al. [56] indicated that 382

CTNNB1 and TP53 were associated with opposite effects on the presence of pseudoglands (a 383

histopathologic feature used for HCC characterization in clinics). In addition, the majority of 384

samples with co-occurring CTNNB1/TP53 mutations ended up in the CTNNB1 cluster based on 385

the gene expression data. However, CTNNB1/TP53 mutated tumors were associated with clonal 386
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progression, in contrast to tumors harboring only CTNNB1. 387

1.5 Hub phosphorylation sites 388

In studies devoted to PPI network characterization, the number of neighbors (degree) of a node 389

in the network is often used to characterize its biological importance [57, 58]. Following this 390

logic, we defined two lists of the most connected nodes in the networks discovered by 391

bnClustOmics. In the first list, we included the top twenty nodes with the largest number of 392

connections that are present with non-zero posterior probabilities in two or all networks (S1 File). 393

Such nodes and their direct neighbors represent the most similar parts between the networks. In 394

the second list, we included all nodes with the largest number of cluster-specific connections (S2 395

File). Interestingly, the nodes in the first list turned out to be P nodes (9 out of 20),M nodes (9 396

out of 20) nodes and T -nodes (2 out of 20) while the top nodes of the second list were 397

dominated by PP nodes (17 out of 20). Hence, of all omics types, phosphorylation sites appear 398

to have the most different neighborhoods between the clusters. While for CN , T , andM nodes, 399

this can be explained by model structural restrictions, for P and PP nodes, this finding suggests 400

that differences in the interactome between clusters are more substantial at the phosphoproteome 401

level than at the proteome level. 402

The list of most differentially connected phosphorylation sites includes MAPK1_T185, 403

CTNND1_S252, and GRB14_S372, which are known to play a role in HCC signaling and affect 404

the regulation of cell cycle, apoptosis, and carcinogenesis (S3 Table). Some of these 405

hub-phosphorylation sites have been found to be important in other cancers than HCC, e.g., 406

ANKRD28_S1011, PRKAA2_S491, and TBXA2R_S331. Our networks suggest that they might 407

also play a role in HCC and are thus candidates for further experiments. 408

MAPK1 is known to be essential for MAP kinase signaling, which is one of the targets of 409

Sorafenib [59–61], a standard-of-care treatment for advanced HCC. The phosphorylation site 410

MAPK1_T185 is increased in cluster 2 and cluster 3 and has a considerable amount of 411

cluster-specific connections in G2 (Fig 6E). The phosphorylation of another MAPK1 site, 412

namely Y187, is significantly increased in cluster 3 only. Both phosphorylation sites have many 413

references in the PhosphoSitePlus database, and are known to induce carcinogenesis and alter 414

apoptosis, and are known drug targets. However, MAPK1 is known to be active if both sites are 415

phosphorylated [62]. The increased phosphorylation of both sites is observed only in cluster 3. 416

At the same time, the role of mono-phosphorylated MAPK1 is not fully understood [63]. 417

Sorafenib which inhibits upstream regulators of MAPK1 [64] was given to six patients from the 418

analyzed cohort, three of which were assigned to cluster 2 and three to cluster 3. Five out of six 419

patients had to discontinue treatment due to side-effects, but patients from cluster 3 on average 420

tolerated the therapy longer and survived longer than patients who were treated with Sorafenib in 421

cluster 2 (S9 Appendix). This separation aligns well with our clustering, although it is not 422

possible to make stronger conclusions due to a limited number of biopsies and the short duration 423

of treatment. 424

One of the MAPK1_T185 interaction partners in G2 is another hub phosphorylation site, 425

PTPN1_S352, whose phosphorylation is increased in cluster 2 only. PTPN1 is known to play an 426

important role in many liver diseases; however, it can act both as a tumor suppressor, and 427

oncogene in HCC [65]. Most studies suggest its tumor-suppressive role. However, our analysis 428

indicates that increased phosphorylation of PTPN1_S352 is associated with a poor prognosis 429

and increased phosphorylation of MAPK1_T185 in cluster 2. This connection is confirmed 430

in [66], where PTPN1 was identified as an oncogene, and its knockdown resulted in attenuated 431

Ras activity and MAPK signaling. We found several inhibitors of PTPN1 in The International 432

Union of Basic and Clinical Pharmacology (IUPHAR) / British Pharmacological Society (BPS) 433

Guide to PHARMACOLOGY [67]. All of them have hypoglycaemic and other anti-diabetic 434

effects. Previous studies already pointed out the anti-tumor properties of diabetes drugs on 435

HCC [68]. We believe that investigating strong individual dependencies in cluster-specific 436
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networks coupled with DGE might suggest drug candidates and highlight interactions that are 437

important in the context of different subtypes of HCC. 438

1.6 Discussion 439

Learning biological networks and cancer subtyping based on multi-omics molecular data are 440

challenging problems, which are traditionally addressed by separate computational methods. In 441

this work, we present bnClustOmics, a tool that tackles both problems simultaneously. Our 442

approach can integrate and cluster multi-omics datasets and learn networks consisting of 443

different types of omics variables, each of which characterizes a patient cluster. In simulation 444

studies, we have shown that bnClustOmics outperforms other clustering approaches due to its 445

ability to detect differences in network structures, while other algorithms mostly lack this ability. 446

A major limitation of our method is the necessity to perform feature selection, which is not 447

straightforward in an unsupervised setting. We suggest using a combination of MOFA and DGE 448

analysis based on our simulation studies, but other ways can also be explored in the future. The 449

package bnClustOmics can be applied to any combination of omics types and is not limited to 450

the five omics types analyzed in this HCC cohort. In the current implementation, there is no 451

possibility to learn the edges between discrete nodes. This feature can further refine clustering, 452

but it makes sense only for larger datasets due to the extreme sparsity of the mutation data. 453

We applied bnClustOmics to an HCC dataset comprising five different omics types. Similar 454

to previous studies [26, 40, 56], the three discovered clusters are associated with mutations in 455

CTNNB1 and TP53, and the BCLC stage. Our patient clustering is significantly associated with 456

survival with and without adjustment for the BCLC stage. Cluster 2 is dominated by samples 457

with mutated TP53 and is associated with a poor prognosis. Samples in which CTNNB1 and 458

TP53 co-occur are mostly found in cluster 1 and cluster 3. Moreover, we find that CTNNB1 and 459

TP53 have opposite effects on the expression of the transcript KMT2D and the phosphorylation 460

site HDAC4_S246 in the learned networks. These findings might explain why CTNNB1 and 461

TP53 show mutual exclusivity patterns [69, 70] and are associated with opposite effects of the 462

phenotype [56] in some cohorts. 463

On a more general level, our analysis suggests that the discovered clusters are associated with 464

changes in signaling networks as identified by substantial differences in the neighborhoods of 465

phosphorylation sites. The differences between interactions partners are the largest on the 466

phosphoproteome level, suggesting that this omics type brings a major contribution to the result 467

of the network-based clustering highlighting the importance of phosphoproteome data for further 468

studies. 469

Cluster-specific networks suggest that hyperphosphorylation of RB1 is associated with 470

mutations in TP53, CTNNB1, and FAT4 but not with overexpression of RB1 at the transcriptome 471

level. This finding aligns with previous studies suggesting that unphosphorylated RB1 acts as a 472

tumor suppressor, while hyperphosphorylation of RB1 contributes to carcinogenesis [48]. Hence 473

therapies that inhibit phosphorylation of RB1 such as Cdk inhibitors may be a promising 474

treatment strategy. 475

Overall, our analysis has shown that including associations between different omics types in 476

the clustering model is an important step towards defining cancer subtypes and their molecular 477

makeup comprehensively. These novel associations may improve the selection of effective 478

personalized therapies. 479

2 Methods 480

2.1 Data 481

We applied bnClustOmics to the HCC data analyzed in [26] (S1 Text). The full dataset 482

comprises 51 biopsies from 49 patients with HCC diagnosis. For each patient, DNA, RNA, 483
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proteome, and phosphoproteome data are available. For two patients, two sets of biopsies were 484

available from two genetically different HCC tumors. In addition, we obtained data from 15 485

biopsies from healthy livers for transcriptome analysis and 11 biopsies for proteome and 10 for 486

phosphoproteome analysis from the same study. A detailed description of sequencing, library 487

preparation, transcript quantification, and SWATH analysis can be found in [26]. We obtained 488

the normalized data from Ng et al. [26] and performed data imputation and batch-correction 489

where applicable (S7 Appendix, S1 Text). One sample was hypermutated with over 9000 490

mutated genes and was excluded from the analysis. Consequently, we included 50 biopsies from 491

48 patients in the study. 492

2.2 Bayesian network mixture model 493

We assume that the data D consisting ofN observations is generated from a mixture of K 494

components with weights �k. Each component is a Bayesian network k, a directed probabilistic 495

graphical model representing a factorization of the joint distribution of the random variables 496

X1, ..., Xn. The random variables are used to model omics features in the analyzed dataset (M , 497

CN , T , P and PP ). Each patient sample Di represents a vector of n values (one for each Xj) 498

and is generated from a model k, depending on the value of a hidden variable Zi [14], 499

Di ∣ (Zi = k) ∼ k = (Gk, �k), (1)
where Gk is a DAG and �k are the parameters of the local probability distributions (LPD). 500

A Bayesian network mixture model was first suggested in [14] for (single-omics) binary 501

mutation data. In our model, each network consists of binary (mutations), ordinal (CNA), and 502

continuous variables (transcriptome, proteome, and phosphoproteome). We denote the set of 503

indices of all binary, ordinal, and continuous nodes by Ω, Φ, and Ψ, respectively. The quantities 504

nb, no, and nc are the numbers of binary, ordinal, and continuous random variables, respectively, 505

in the network. We model the LPD for each continuous node X k,  ∈ Ψ, of each mixture 506

component by linear regression on its parents in graph Gk, 507

P (X k ∣ Pa k, �k, Gk) = 
⎛

⎜

⎜

⎝

X k

|

|

|

|

|

m k +
∑

X� k∈Pa k

�� kX� k, �
2
 k

⎞

⎟

⎟

⎠

, (2)

where Pa k is the set of parents of node X k in graph Gk. The set of parameters of the LPDs of 508

continuous nodes includes a vector of regression intercepts mk, a vector of standard deviations 509

�k, and a vector of regression coefficients B k defined for all nodes with non-empty parent set. 510

Given a graph Gk, the Gaussian Bayesian network model above can be equivalently 511

parameterized using a vector of unconditional means �k and a covariance matrix Σk (S4 512

Appendix). We use both parametrizations interchangeably. Binary and ordinal nodes are not 513

allowed to have parents by assumption. For binary nodes X!k, we assume that the LPDs are 514

defined by the parameters 515

�!k = P (X!k = 1) (3)
and for ordinal nodes X�k, we use the Gaussian approximation 516

P (X�k ∣ �k) =  (X�k ∣ m�k, �2�k). (4)
We denote the set of all parameters of a mixture component k by �k = (�k, �k, Σk). 517

2.3 EM algorithm 518

Following [14] we use an EM algorithm for learning Bayesian network mixture models. We 519

denote by Di the i-th observation in the dataset, representing a vector of omics measurements of 520

one patient (or one biopsy in case of multiple biopsies per one patient). The algorithm proceeds 521

as follows: 522
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1. Initialize cluster membership probabilities 
ik of patient i being in cluster k (Section 2.7) 523

2. Given 
ik, perform MAP structure search and estimate DAGs Ĝk (Section 2.5) 524

3. Given estimated DAGs Ĝk, iterate q times: 525

• (M-step) Compute MAP parameters �̂k (S5 Appendix) 526

• (E-step) Update membership weights


ik =
�kP (Di ∣ Ĝk, �̂k)

∑K
k}=1 �k}P (Di ∣ Ĝk} , �̂k} )

and cluster weights
�k =

∑N
i=1 
ik
N

(Section 2.6) 527

4. Iterate steps 2 and 3 until convergence 528

The internal cycle with q iterations is added for computational efficiency because parameter 529

updates are computationally less expensive than structure search. Hence, for each update of the 530

structures, we perform q updates of the parameters. We learn cluster membership assignments 531

for all patients Di and MAP networks Ĝk. Once the EM algorithm has converged, bnClustOmics 532

can optionally perform sampling from the posterior distribution and the output includes the 533

matrices of estimated probabilities of all edges (Section 2.5). 534

The main differences to the procedure in [14] are a different set of parameters �k and 535

network structural constraints due to the multi-omics extension and differences in data types. 536

2.4 Network score 537

For assessing how well the network structure fits the data, we use the BGe score [71, 72]. In 538

addition to the model assumption specified in Eq 2, the BGe score requires technical 539

assumptions on likelihood and parameter prior [71]. The network score R(Gk ∣ D) then 540

decomposes over continuous nodes as 541

P (Gk ∣ D) ∝ R(Gk ∣ D) =
∏

 ∈Ψ
S(X k,Pa k ∣ D). (5)

By our model design, nodes X� and X!, corresponding to mutations and copy number changes, 542

are not allowed to have any parents. Hence, the terms S(X�k,Pa�k ∣ D) = S(X�k ∣ D) and 543

S(X!k,Pa�k ∣ D) = S(X!k ∣ D) are constant for all possible graphs. For this reason, we 544

exclude these terms when performing structure search and the product in Eq 5 runs only over 545

nodes X k. However, nodes X�k and X!k may enter the equation as parents of X k. 546

2.5 Structure search 547

At each step of structure search, we use the iterative order MCMC scheme introduced in [30] and 548

implemented in the R-package BiDAG [31], which proved to be superior to many other methods 549

for MAP structure search in simulation studies [30]. An optional step after the MAP graph has 550

been found is to sample graphs from the posterior distribution using the order MCMC 551

scheme [30]. This step allows us to estimate consensus models by averaging over a sample of L 552

graphs from the posterior distribution. In particular, the posterior probability of an edge e� k 553

between nodes X�k and X k in the graph Gk is estimated as: 554

P (e� k ∣ D) ≈
1
L

L
∑

l=1
1{e� k ∈ Glk}, (6)
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where 1{e� k ∈ Glk} = 1 if the edge e� k is present in structure Glk and 0 otherwise. Edges 555

whose posterior probabilities are lower than a defined posterior threshold are excluded from the 556

resulting consensus structure [30]. 557

We use the iterative MAP search at the second step of the EM algorithm and perform 558

sampling once after the EM has converged to compute posterior probabilities of single edges and 559

identify consensus graphs. 560

To construct graphs for the downstream analysis, we made a list of edges whose posterior 561

P (e� k ∣ D) is higher than 0.9 for at least one cluster k (the threshold was chosen based on our 562

simulation studies). In addition, we selected all edges whose sum of posteriors in all clusters 563
∑K
k=1 P (e� k ∣ D) > 1.2, while the threshold for individual networks is lower: 564

P (e� k ∣ D) > 0.5 for at least one cluster k. Finally, we constructed the graphs Gk by including 565

edges from the selected list if their posterior P (e� k ∣ D) > 0.4. The reason behind this 566

selection process is finding high-confidence cluster-specific interactions while not dismissing 567

similarities at lower (but non-zero) posterior levels. 568

2.6 Cluster membership weights 569

Updating the membership weights 
ik requires assessment of the likelihoods P (Di ∣ Ĝk, �̂k).The decomposition provided by the Bayesian network model allows us to integrate discrete and
continuous data types in measuring how well an observation Di (a vector consisting of nccontinuous, no ordinal, and nb binary components) fits a DAG Ĝk andparameters �̂k = (�̂k, �̂k, Σ̂k):

P (Di ∣ Ĝk, �̂k) =
∏

 ∈Ψ
P (Di ∣ Pa k, �̂k, Σ̂k)

∏

�∈Φ
P (Di� ∣ �̂k, Σ̂k)

∏

!∈Ω
P (Di! ∣ �̂!k) (7)

The detailed formulas for computing the likelihoods are given in S6 Appendix. We have 570

extended the R-package BiDAG, such that the function scoreagainstDAG is able to 571

accommodate mixed data. 572

2.7 Starting membership weights 573

In general, the EM algorithm does not guarantee finding the global maximum, and the local 574

maximum it finds will depend on the starting point. For this reason, we use a non-random 575

starting point in order to start in a parameter region of high likelihood and help mitigate the local 576

optima issue. By default (and for the HCC data), the starting cluster membership of patients is 577

defined via running mclust on the first K + 2 principal components after applying PCA to the 578

original data. Our simulation studies have shown that dimension reduction via PCA as a starting 579

point improves the results of mclust. The initial membership weights are then defined as 580


ik =

{ 3
K+2 , if k = gi
1

K+2 , otherwise, (8)

where gi denotes the cluster assignment of the itℎ observation by mclust. PCA is applied only to 581

define the initial membership weights, but the EM algorithm is then applied to original 582

non-reduced data. With a non-random starting point, by default, bnClustOmics runs the EM 583

only once (the results of simulation studies are shown for one run). However, for the HCC 584

dataset, we restarted the EM five times and selected the model with the highest likelihood for 585

each value of K . 586
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2.8 Allowed edges 587

By design, bnClustOmics only prohibits incoming edges to discrete nodes. In the HCC data 588

analysis, we added more constraints to obtain more biologically relevant networks. The general 589

flow of the information is directed from the DNA to RNA and (pshospho)protein nodes (S4 590

Table). 591

Naturally, we allow all possible edges between P and PP nodes. We do not allow edges 592

between transcripts because the transcripts do not interact directly. When proteome data is not 593

available, it makes sense to approximate protein-protein interactions with transcript-transcript 594

interactions. However, since we have (phospho)proteome data available, we prefer to explain 595

dependencies with more relevant and interpretable edges between (phospho)proteins and 596

between transcripts and proteins. 597

2.9 Edge penalization matrix 598

When performing structure search, we use the prior information about interactions between the
genes included in the networks, following the methodology described by Kuipers et al. [14]. To
do this, we modify the default prior distribution over structures P (Gk) and replace it with

P ′(Gk) ∝
1

∏

 ∈Ψ
∏

�∶X�k∈Pa k �� 
,

where �� defines the penalization factor of the edge X�k → X k. Note that �� ≥ 1 and these
factors do not depend on k since prior knowledge does not include cluster assignments. The
change of prior leads to replacing of the score terms S(X k,Pa k ∣ D) with the terms
S′(X k,Pa k ∣ D) in Eq 2.4 for all nodes X k with non-empty parent sets:

S′(X k,Pa k ∣ D) =
S(X k,Pa k ∣ D)
∏

�∶X�k∈Pa k �� 
.

We use the STRING v.11.0 [35] and Omnipath [39] databases to define penalization factors. 599

We penalize the edges by a factor of 2 if they are not found in the databases. The edges 600

corresponding to interactions from the Omnipath database are not penalized. The edges 601

corresponding to the interactions from the STRING database are not penalized if the interaction 602

score is equal to or bigger than 0.5. Otherwise the penalization factor is defined as 603

2 − 2 ∗ interaction_score. In addition, we do not penalize the edges between the same genes of 604

different omics types, e.g., the edges TP53-T → TP53-P and TP53-CN → TP53-T are not 605

penalized. 606

2.10 Feature selection 607

The structure search is the most computationally expensive step of the learning procedure. The 608

complexity of the structure search scheme depends only on the number nc of continuous nodes 609

in the network (since the product in Eq 5 goes only over continuous nodes) and equals 610

O(n3c log nc) [30]. Hence, for the feasibility of bnClustOmics, we must pre-select the features 611

which we include in the Bayesian networks. Another beneficial point of sensible feature 612

selection is better interpretability since the qualitative analysis is hardly possible for networks 613

with thousands of nodes. 614

We selected 778 omics features in total (Table 3 in S3 Appendix): 24M , 292 CN , 188 T , 615

116 P and 158 PP . The main idea behind our feature selection approach was to combine 616

methods that proved to work best in simulation studies (S2 Appendix) with prior knowledge 617

about genes and interactions that are known to be important in HCC signaling (S3 Appendix). In 618

addition to listed criteria we used reasonable filters for selected features: we included only those 619

M nodes which are present in at least two samples and CN nodes with non-zero variance. 620
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2.11 Survival analysis 621

To study the association of clusters with clinical outcomes, we used the Cox proportional 622

hazards model with and without adjustment for clinical stage BCLC. Time was measured in days 623

from the date of diagnosis. In the adjusted model, we excluded BCLC group “0” consisting of 624

one sample, which did not include death events. If two or more biopsies were available for one 625

patient, one of them was included in the analysis if the cluster assignments for all of them were 626

the same. Otherwise, all samples from the patient were excluded. Two samples of patients who 627

were lost-to-followup were considered censored. We used a likelihood ratio test based on the �2 628

distribution to assess the model fit. 629

2.12 Enrichment analysis 630

Pathway enrichment analysis was performed using the R package ReactomePA [73]. For each 631

omics type, a list of differentially expressed/phosphorylated genes (proteins, phosphoproteins) 632

with FDR adjusted p-value smaller than 0.05 was used as input. Pathways enriched with 633

FDR-adjusted p-value smaller than 0.05 were selected for visualization. 634

2.13 Differential gene and protein expression analysis 635

For DGE analysis, we used the R package edgeR [74] for transcriptome data, and limma [75] for 636

proteome and phosphoproteome data. Genes were considered differentially expressed if the 637

FDR-adjusted p-value was smaller than 0.05. For variable selection, we compared tumor to 638

healthy samples for all omics types. For the heatmap in Fig 4D, we compared samples in a 639

specific cluster to samples in all other clusters. In the downstream analysis, we have also 640

performed DGE analysis between tumor samples in individual clusters and healthy samples. 641
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Supporting information 895

S1 Appendix. Generating Bayesian network mixtures and data in simulations studies. 896

The steps of generating a Bayesian network mixture and the dataset from this mixture include: 897

1. Generating DAGs Gk, k = 1, ..., K , consisting of n variables each, nb binary and nc 898

continuous. 899

• First, we generate a random DAG G1 consisting of nc continuous nodes with the 900

function randomDAG from the R-package pcalg [76]. The parameter prob is set to 901
2
nc

and corresponds to each continuous node X k having one continuous parent on 902

average. Then, the remaining K − 1 DAGs in the mixture are generated such that the 903

SHD between each of them and the first structure equals �|E|, where |E| is the 904

number of edges in the first randomly generated structure. We use � values in the 905

range 0.1 − 0.4, hence graphs representing different mixture components have a lot 906

of edges in common. From a biological point of view, this makes sense: While some 907

interactions may be altered in a particular cancer subtype, most of them will stay the 908

same (e.g. housekeeping pathways). 909

• At the next step, we add random edges from binary to continuous nodes, such that 910

each binary node has 0.5 continuous children on average. These edges model the 911

effects of mutations on other nodes (e.g. transcripts, proteins) and are generated 912

randomly for each mixture component. 913

2. Generating parameters of local probability distributions (LPDs) for each structure. 914

• For 99% of binary nodes X!k, frequencies �!k are sampled from beta distribution 915

with parameters � = 0.1, � = 7, modeling sparse and heterogeneous mutation data. 916

For 1% of binary variables (minimum one variable) frequencies �!k are sampled 917

from a beta distribution with parameters � = 0.5 and � = 1, modeling rare genes, for 918

which higher frequencies are observed in known cancer subtypes. 919

• For continuous nodes: regression coefficients � k for nodes with non-empty parent 920

sets are chosen in the range [0.5, 1.5]. Conditional standard deviations � k are 921

sampled from a normal distribution with mean 0.3 and standard deviation 0.2; to 922

prevent negative values, we use the absolute values of generated numbers. 923

• Regression intercepts m k = 0, by default, apart v = �nc nodes Gk. For these v 924

nodes, we first sample the sign (“+” or “-”) with equal probability and then sample 925

randomly in the range [0.5, 1.5] or [−1.5,−0.5]. The parameter � directly impacts 926

how far the centers of distributions �k are from each other. 927

3. Generating data for each mixture component Zk, k = 1, ..., K using graphs and 928

parameters generated in the previous steps. 929

• GenerateNZk observations of each binary node X!k from a Bernoulli distribution, 930

using parameters �!k. 931

• GenerateNZk observations of each continuous node X k according to the Eq 2, 932

using parameters Gk, mk, Bk, �k. 933

We varied two parameters of generated Bayesian network mixtures to see how different 934

algorithms performed depending on the signal strength, defined as L2 norm between centers of 935

distributions of mixture components. The first parameter � is responsible for the structural 936

difference between networks representing mixture components. The second parameter � was 937

responsible for differences between vectors of regression intercepts mk, k = 1, ..., K . The tables 938

below represent the correspondence between x − axis labels used in Fig 2A:D, �, � and average 939

L2 norm of differences between vectors of unconditional means �i and �j , i ≠ j. 940
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Table 1. Distances between cluster centers, n = 120. Correspondence between parameters �,
� and labels used to define the distances between cluster centers Fig 2A:C (n = 120, nb = 20,
nc = 100). The fourth column represents average L2 norm between pairs of �i and �j , i ≠ j for
all generated mixtures; the range is given in brackets.
Distance � � average L2
no 0.1 0 0.27 (0.03, 0.85)
small 0.2 0.1 5.78 (4.24, 6.86)
medium 0.3 0.2 9.44 (7.89, 10.73)
large 0.4 0.4 14.28 (12.89, 17.37)

Table 2. Distances between cluster centers, n = 1100. Correspondence between parameters �,
� and labels used to define the strength of the signal in Fig 2D (n = 1100, nb = 100, nc = 1000).The fourth column represents average L2 norm computed pairwise for all �i and �j , i ≠ j for all
generated mixtures; the range is given in brackets.
Distance � � average L2
small 0.1 0.02 7.71 (7.08, 8.6)
medium 0.2 0.04 11.39 (10.12, 12.63)
large 0.3 0.06 14.69 (13.84, 15.73)

S2 Appendix. Feature selection simulation. This simulation study illustrates clustering 941

accuracy of bnClustOmics depending on the selection of relevant features. For simulations we 942

use nc = 1000 (similarly to the feature selection benchmarking study [77]) and nb = 100. For 943

clustering, we choose only binary features which equal to 1 in at least one generated sample. In 944

addition we try several approaches to select the continuous features: 945

1. random selection: 150 continuous features 946

2. moCluster: 150 continuous features with non-zero loadings defined by sparse consensus 947

PCA 948

3. MOFA: top 150 features sorted by total absolute weight in all latent factors 949

4. ranking by the absolute value of normalized mean: top 150 features sorted by ||
|

|

X 
s 

|

|

|

|

, 950

where X is sample mean and s is sample standard deviation of X 951

5. hybrid of 3. and 4.: mix of MOFA (75 features) and ranking by the absolute value of 952

normalized mean ||
|

|

X 
s 

|

|

|

|

(75 features). 953

By simulation study design, the default values for all continuous nodes are 0. Hence a 954

ranking by the normalized mean ||
|

|

X 
s 

|

|

|

|

is similar to a ranking by the one-sample t-test statistics 955

and defines the variables which most extremely deviate from 0. Feature selection using 956

normalized mean can be seen as a proxy to performing the DGE analysis in the real expression 957

data and selecting genes whose expression mostly deviates from non-tumor samples. 958

The method moCluster performed best with regard to feature selection in the benchmarking 959

study [77]. However, in that study, the authors generated all variables independently and did not 960

include any interactions in the model. In our simulation, this approach did not perform well. 961

Ranking by normalized mean has shown the best performance. However, MOFA preserves more 962

edges from the original network in subnetworks consisting of selected nodes only. For this 963

reason, when comparing the accuracy of bnClustOmics to other methods in Fig 2D, we show the 964

accuracy of bnClustOmics when the hybrid approach is used for feature selection. 965
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Fig 7. (A) Accuracy of bnClustOmics with different feature selection approaches. (B) The total
number of edges from all generated networks which are also present in subnetworks consisting
of selected nodes.

S3 Appendix. Feature selection for the HCC analysis. 966

To selectM nodes, we included all mutated genes found significant by MutSigCV tool (q < 967

0.1). In addition, we have added the genes which were found significantly mutated in the TCGA 968

HCC cohort, and the genes identified by HCC studies [36–38] as potential cancer drivers if they 969

were mutated in at least two samples in the HCC dataset. 970

For nodes of continuous types, we first identified latent factors using MOFA on a subset of 971

features passing standard deviation thresholds (1 for proteome and 2 for transcriptome and 972

phosphoproteome). Five latent factors have been identified by MOFA. Consequently, we 973

selected the top 50 features for each omics type by the total absolute weight of features in all 974

latent factors. 975

We extended the selected P and PP features by performing the DGE analysis and picking 976

the differentially expressed features (q <0.05), which are also present in the kinase-substrate 977

database Omnipath. Their crucial role in cancer development explains our interest in kinases. 978

Most protein kinases promote cell proliferation, survival, and migration. Furthermore, their 979

aberrant activity is often associated with cancer development [78]. The standard-of-care HCC 980

treatment, Sorafenib, is also a multi-kinase inhibitor. 981

For P nodes, we also selected differentially expressed features present in the transcription 982

factor (TF) database Omnipath, confidence level B. 983

We have also extended each omics feature set with genes present in selected features of other 984

omics sets for consistency and interpretability of networks. For example, for the possibility of 985

discovering an edge TP53-M → TP53-P , we have included TP53 at the protein level. The same 986

reasoning stands behind our choice of CN nodes, which were selected as a union of gene 987

features selected from transcriptome, proteome, and phosphoproteome. In addition, we included 988

CN nodes identified as potential drivers in [26]. We excluded CN nodes that had 0 variance in 989

the HCC dataset. 990
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Table 3. Summary of feature selection for each omics type. The features are selected as a
union of features satisfying the listed criteria. nO denotes the number of selected features per
each omics type.
omics type criteria nO
M MutSigCV (q<0.1)

Identified in [36–38] 24
CN M, T, P and PP features

Identified in [26] 292

T
MOFA top 50 by absolute weight,
P features
Targets of P features chosen as TF

188

P

MOFA top 50 by absolute weight
M, T features
DE (q<0.05) + present in Omnipath TF database
DE (q<0.05) + present in Omnipath KS database

116

PP MOFA top 50 by absolute weight
DE (q<0.05) + present in Omnipath KS database 158

all 778

S4 Appendix. Two ways to parametrize a Gaussian Bayesian network. In this section, we 991

drop indices k, so the equations are valid for all mixture components. There are two ways to 992

parametrize a Gaussian Bayesian network. One way is via a vector of regression intercepts m, a 993

noise vector �, and regression coefficients B = {� } as in Eq 2. The second way is via a vector 994

of unconditional means � and a covariance matrix Σ. Given the DAG G, the parameters {�, Σ} 995

can be transformed into equivalent parameters {m, B, �} [71], where regression coefficients � 996

are computed only for those nodes, which have non-empty parent sets in a DAG G. Let ΣV W be 997

the block of the covariance matrix consisting only of rows with indices V and columns with 998

indicesW . And letW be the parents of node V in the graph G, then 999

mV = �V − ΣV W Σ−1WW �W
�V = Σ−1WW ΣV W
�2V = ΣV V − ΣV W Σ−1WW ΣW V .

For convenience, we use both parametrizations interchangeably. For example, in defining 1000

parameters of simulation studies it is more convenient to use {m, B, �}, while in the description 1001

of the EM algorithm we use {�, Σ}. 1002

S5 Appendix. MAP parameters estimation. LetNk =
∑N
i=1 
ik. For binary (mutation)

nodes, we follow [14] and parametrize local probability distributions as P (X!k = 1) = �!k,
with a beta prior on �!k with hyperparameters � = � = 1

4 . The posterior of � follows a beta
distribution as well, so we compute the MAP parameters for all binary nodes X! in the M step
of the EM algorithm as follows:

�̂!k =
1
4 +

∑N
i=1 
!kDi!

1
2 +Nk

For continuous and ordinal nodes we use the BGe score and assume a
normal-inverse-Wishart prior on the parameters � and Σ [71]:

� ∼ (�, a�Σ)
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Σ ∼−1(aw, U ).

The posterior is then also normal-inverse-Wishart and the MAP parameters are computed as
follows:

�̂k =
NkDNk + a��
a� +Nk

Σ̂k =
U + SNk +

a�Nk
a�+Nk

(� −DNk)(� −DNk)
′

aw +N − n − 1
,

where DNk =
∑N
i=1 
ikDi
Nk

and SNk = ∑N
i=1 
ik(Di −DNk)(Di −DNk)

′ . The values of the 1003

hyperparameters a�, aw, the prior mean vector � and the parametric matrix U by default are set 1004

as follows [79]: 1005

a� = 1

aw = n + a� + 1

� = 0

U = 1
a�(aw − n − 1)

a� + 1
= 1

2
,

where 1 is the identity matrix, and 0 is a vector consisting of zeros. 1006

When MAP graphs Gk and parameters �̂k, Σ̂k are estimated, the estimates (m̂k, B̂k, �̂k) are 1007

computed according to S4 Appendix. 1008

S6 Appendix. Local likelihoods formulas. For binary nodes, we compute likelihoods as
P (Di! ∣ �̂!k) = �̂

Di!
!k (1 − �̂!k)

1−Di!

for all binary nodes. 1009

For continuous nodes X , we compute Gaussian likelihoods according to the model
specified in Eq 2,

P (Di ∣ Pa k, �̂k, Σ̂k) =
1

√

2��̂2 k
exp

⎛

⎜

⎜

⎝

Di − m̂ k −
∑

�∶X�k∈Pa k �̂
�
 kDij

2�̂2 k

⎞

⎟

⎟

⎠

For copy number nodes X�, we use a similar Gaussian likelihood, but the sum over parents is
dropped due to structural assumptions:

P (Di� ∣ �̂k, Σ̂k) =
1

√

2��̂2�k
exp

(

Di� − m̂�k
2�̂2�k

)
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S7 Appendix. Data pre-processing. 1010

For transcriptome data, the pre-processing steps included: 1011

• Like in [26] gene-level expected counts were upper-quartile-normalized to 1000. 1012

• log2 transformation. 1013

For proteome data, the pre-processing steps included: 1014

• log2 transformation. 1015

• Normalization by median substraction. 1016

• Filtering out proteins which were detected in less than 50% of samples. 1017

• For clustering only: imputation of missing values using the R package impute [80]. For 1018

differential expression analysis, we used unimputed values. 1019

For phosphoproteome data, the pre-processing steps included: 1020

• log2 transformation. 1021

• Normalization by median substraction. 1022

• Filtering out proteins which were detected in less than 50% of samples. 1023

• Batch correction with the R package edgeR. 1024

• For clustering only: imputation of missing values using the R package impute [80]. For 1025

differential expression analysis, we used unimputed values. 1026

The CNA data was obtained at the gene level from the study by Ng et al. [26]. The copy 1027

number status was derived from the log-ratio and takes values from 2 to −2, which denote [81]: 1028

• 2: amplification 1029

• 1: copy gain indicates a low-level gain 1030

• 0: copy number neutral 1031

• -1: shallow deletion indicates a shallow loss, possibly a heterozygous deletion 1032

• -2: deep deletion indicates a deep loss, possibly a homozygous deletion 1033

This way, despite the ordinal nature of the CNA data, the range of the values justifies the 1034

normal approximation. 1035
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S8 Appendix. High-confidence connections of TP53-M in G2. We investigated the edges 1036

outgoing from TP53-M whose posterior probabilities in G2 is higher than 0.9 (p_cl2> 0.9, 1037

Table 4). All four identified edges are specific to G2, as their posteriors in other networks are 1038

lower than 0.4. We further considered only gene products that were differentially expressed in 1039

cluster 2 (p_DE2< 0.05). Three edges satisfied these criteria. Eventually, we focussed on the 1040

edge connecting TP53-M and TERT-T , since it was also found in the STRING database. 1041

Table 4. Connections of TP53-M node whose posterior probability is larger than 0.9 in network
G2 representing cluster 2. p_cl columns report posterior probabilities for corresponding clusters;
p_DE columns report adjusted p-values of nodes in column "to" from the DGE analysis.

from to type1 type2 gene1 gene2 database p_cl1 p_cl2 p_cl3 p_DE1 p_DE2 p_DE3
TP53 ENSG00000164362 M T TP53 TERT TRUE 0.39 0.92 0.18 < 0.01 < 0.01 < 0.01
TP53 Q9BWD1 M P TP53 ACAT2 FALSE 0.00 0.95 0.00 0.31 < 0.01 < 0.01
TP53 Q13435_S436 M PP TP53 SF3B2 TRUE 0.39 0.93 0.17 0.76 0.95 0.77
TP53 Q9BW71_S160 M PP TP53 HIRIP3 FALSE 0.00 0.98 0.21 < 0.01 0.01 0.02

Fig 8. TP53-M node and its neighbors in networks representing three clusters identified by
bnClustOmics.
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Fig 9. Log2-fold changes between expression of TERT-T in three HCC clusters and mean
expression of TERT-T in 15 healthy livers.

S9 Appendix. Responses to treatment with Sorafenib. Six out of all 48 patients in the 1042

analyzed cohort were treated with Sorafenib. All of these patients were assigned to either 1043

cluster 2 or cluster 3 and none to cluster 1. Edmondson grade, survival, and side-effects to 1044

Sorafenib were mostly similar within clusters. Two of three patients in cluster 2 experienced 1045

hepatic decompensation within several days after the start of treatment and had to stop it. 1046

Patients from cluster 3 could, on average, tolerate the side effects longer. All patients in cluster 3 1047

survived longer than patients in cluster 2 even within the same clinical stage. 1048

Table 5. Clinical information about patients who received treatment with Sorafenib and ware
assigned to cluster 2 in the clustering by bnClustOmics. Survival time and length of treatment
are reported in days.

sample ID Edmondson age_diagnosis death survival time BCLC treatment length reason to stop
C177c 3 18 1 45 C 8 Hepatic Decompensation
C383b 3 48 1 94 B 6 Hepatic Decompensation
B763b 4 60 1 385 A 123

Table 6. Clinical information about patients who received treatment with Sorafenib and were
assigned to cluster 3 in the clustering by bnClustOmics. Survival time and length of treatment
are reported in days.

sample ID Edmondson age_diagnosis death survival time BCLC treatment length reason to stop
C795 2 53 1 625 A 58 Intolerant to side-effects
C346b 2 72 0 1663 A 118 Intolerant to side-effects
B983b 2 74 1 485 B 57 Intolerant to side-effects
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S1 Fig. SHD between estimated graphs and the ground truth. 50 BN mixtures were 1049

generated with unequal mixture weights: NZ1 = 150,NZ2 = 100,NZ3 = 50,NZ4 = 20 1050

(cluster 1, cluster 2, cluster 3 and cluster 4). Distance between cluster centers is set to medium. 1051

bnClustOmics was used for clustering. The output MAP and consensus structures were 1052

compared to the ground truth CPDAG. 1053
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S2 Fig. Hazard ratios. Hazard ratios of discovered clusters with (B) and without (A) 1054

adjustment for the BCLC stage. 1055
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S3 Fig. Connections of KMT2D and RB1 transcripts in networks discovered by 1056

bnClustOmics. 1057
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S1 Table. Cox model fit. Summary of the likelihood ratio test for Cox proportional hazards 1058

models based on assignments obtained by clustering algorithms. The number of clusters K = 3 1059

in all cases. For all algorithms apart from bnClustOmics and MOFA, all available omics features 1060

were used as input. For MOFA, standard deviations filters (1 for P features, 2 for T and PP , 0.5 1061

for CN features ) were applied as recommended by the authors of the method. 1062

algorithm p-value p-value (BCLC-adjusted)
mclust 0.17 0.32
hclust 0.0018 0.137
kmeans 0.024 0.77
iClusterPlus 0.06 0.67
CIMLR 0.94 0.39
CIMLR (T ,P ,PP ) 0.017 0.20
MOFA 0.13 0.21
bnClustOmics 0.038 0.043
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S2 Table. Signaling pathways enriched with direct interactors of M nodes in networks 1063

discovered by bnClustOmics. FDR values reflect the enrichment of KEGG signaling pathways 1064

with children ofM nodes in cluster-specific networks. FDR values below 0.05 suggest 1065

significant enrichment.
pathway G1 G2 G3
Hepatocellular carcinoma 0.0007 <0.0001 <0.0001
Proteoglycans in cancer 0.0015 0.0007 <0.0001
PI3K-Akt signaling 0.0002 0.0024 <0.0001
Cellular senescence 0.0185 0.0039 0.00051
wnt signaling 0.0033 >0.05 0.00058
p53 signaling 0.0219 0.0108 0.0079
Insulin signaling >0.05 0.0109 <0.0001
mTOR signaling >0.05 0.0157 0.0031
Cell Cycle 0.0095 0.0387 0.0071
AMPK signaling >0.05 0.0387 0.0071
HIF-1 signaling >0.05 >0.05 0.00062
MAPK signaling >0.05 >0.05 0.0358
JAK-STAT signaling >0.05 >0.05 0.0166
Rap-1 signaling >0.05 >0.05 0.0358
Hippo signaling 0.0033 >0.05 >0.05
PD-L1 expression and PD-1
checkpoint pathway in cancer >0.05 0.016 >0.05
Erbb signaling >0.05 >0.05 <0.0001

1066
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S3 Table. Known functions of most connected phosphorylation sites. A list of 1067

phosphorylation sites with more than 15 cluster-specific interaction partners and their known 1068

functions in HCC and other cancers according to the PhosphoSitePlus database.

ID Gene_ID DB In liver
studies

In HCC
studies

Downstream
effects

Upstream
regulators

Known
treatments

Q96T23_S1345 RSF1 yes yes - - - yes
O15084_S1011 ANKRD28 yes - - intracellular

localization CAMK2D -
Q9UJM3_S273 ERRFI1 yes yes - - EGFR -
Q9Y2T1_S70 AXIN2 yes - - - - -
B1AK53_S642 ESPN - - - - - -
P00533_S1166 EGFR yes yes yes

activates
signalling
cascades

CAMK2A yes

P28482_T185 MAPK1 yes yes yes
altered
apoptosis
cell growth

- yes

P05556_S785 ITGB1 yes - yes cytoskeletal
reorganization PKCA yes

P21333_S1734 FLNA yes - - - - -
O14828_S76 SCAMP3 yes - yes - - yes
O60716_S252 CTNND1 yes yes yes carcinogenesis

induced - yes
P18031_S352 PTPN1 yes - - - - -
P19878_S312 NCF2 yes - - - - -
P21731_S331 TBXA2R yes - -

signalling
pathway
regulation

PKACA yes

P54646_S491 PRKAA2 yes - - altered
autophagy - yes

P62753_S244 RPS6 yes - yes - mTOR
TSC2 yes

Q13557_T287 CAMK2D yes yes yes - - yes
Q14449_S372 GRB14 yes - yes cell cycle

regulation - yes
Q8IXS6_S228 PALM2 yes - - - - -

1069
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S4 Table. Allowed edges between features in the HCC analysis. Allowed edges (i.e., not 1070

blacklisted) between and within omics types in the HCC analysis. Let X and Y denote gene 1071

names. Then, all edges from CN nodes to P nodes of the same genes are encoded as from 1072

X-CN to X-P . Edges between any two genes are encoded as edges between X-CN and Y-P 1073

(this includes the case when X equals Y).
from to example of biological interpretation
X-M Y-T , Y-P , Y-PP functional interaction
X-CN X-T , X-P , X-PP central dogma of molecular biology
X-T X-P , X-PP central dogma of molecular biology
X-P Y-T transcription factor and its target, functional interaction
X-PP Y-T transcription factor and its target, functional interaction
X-P , X-PP Y-P , Y-PP physical interaction, functional interaction

1074The biological interpretation of most edges is straightforward, however, edges of type X-M 1075

→ Y-P∕T ∕PP , for two genes X and Y, are rarely considered when learning the networks. 1076

Mehnert et al. [21] have shown via experiments that a cancerous mutation in gene X can change 1077

the interactome of its protein product X-P without affecting the expression of X-P itself. Say 1078

Y-P is one of the interactors of X-P affected by a mutation in gene X. In this case, we can 1079

observe a statistical dependency between a mutation node X-M and a protein node Y-P (but not 1080

between X-P and Y-P ). Such dependencies are particularly interesting because they help 1081

understand the links between genotypes and phenotypes. 1082

S1 Text. Data and code availability. 1083

The sequencing datasets are available at European Genome-phenome Archive under 1084

accessions EGAS00001005073 (whole-exome sequencing), EGAS00001005074 1085

(RNA-sequencing). The mass spectrometry proteomics and phospho-proteomics data have been 1086

deposited to the ProteomeXchange Consortium via the PRIDE partner repository under 1087

accessions PXD025705 and PXD025836. 1088

The pre-processed reduced and non-reduced multi-omics datasets used for clustering by 1089

bnClustOmics and other methods in this study as well as the code and results of simulation 1090

studies and HCC clustering are available at the GitHub repository 1091

https://github.com/cbg-ethz/HCC. Patient IDs were encrypted. 1092

The R-package bnClustOmics is available at the GitHub repository 1093

https://github.com/cbg-ethz/bnclustOmics. 1094

S1 File. Top twenty most similarly connected nodes and their interactions partners in 1095

cluster-specific networks. 1096

S2 File. Top twenty most differently connected nodes and their interactions partners in 1097

cluster-specific networks. 1098
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