2,612 research outputs found

    Targeted Social Distancing Designs for Pandemic Influenza

    Get PDF
    Local community networks can mitigate pandemic influenza in the absence of vaccine and antiviral drugs

    Dust Condensation in Evolving Discs and the Composition of Planetary Building Blocks

    Full text link
    Partial condensation of dust from the Solar nebula is likely responsible for the diverse chemical compositions of chondrites and rocky planets/planetesimals in the inner Solar system. We present a forward physical–chemical model of a protoplanetary disc to predict the chemical compositions of planetary building blocks that may form from such a disc. Our model includes the physical evolution of the disc and the condensation, partial advection, and decoupling of the dust within it. The chemical composition of the condensate changes with time and radius. We compare the results of two dust condensation models: one where an element condenses when the mid-plane temperature in the disc is lower than the 50 per cent condensation temperature (⁠T50T50⁠) of that element and the other where the condensation of the dust is calculated by a Gibbs free energy minimization technique assuming chemical equilibrium at local disc temperature and pressure. The results of two models are generally consistent with some systematic differences of ∼10 per cent depending upon the radial distance and an element’s condensation temperature. Both models predict compositions similar to CM, CO, and CV chondrites provided that the decoupling time-scale of the dust is of the order of the evolution time-scale of the disc or longer. If the decoupling time-scale is too short, the composition deviates significantly from the measured values. These models may contribute to our understanding of the chemical compositions of chondrites, and ultimately the terrestrial planets in the Solar system, and may constrain the potential chemical compositions of rocky exoplanets

    Spatial correlation between submillimetre and Lyman-alpha galaxies in the SSA 22 protocluster

    Get PDF
    Lyman-alpha emitters are thought to be young, low-mass galaxies with ages of ~10^8 yr. An overdensity of them in one region of the sky (the SSA 22 field) traces out a filamentary structure in the early Universe at a redshift of z = 3.1 (equivalent to 15 per cent of the age of the Universe) and is believed to mark a forming protocluster. Galaxies that are bright at (sub)millimetre wavelengths are undergoing violent episodes of star formation, and there is evidence that they are preferentially associated with high-redshift radio galaxies, so the question of whether they are also associated with the most significant large-scale structure growing at high redshift (as outlined by Lyman-alpha emitters) naturally arises. Here we report an imaging survey of 1,100-um emission in the SSA 22 region. We find an enhancement of submillimetre galaxies near the core of the protocluster, and a large-scale correlation between the submillimetre galaxies and the low-mass Lyman-alpha emitters, suggesting synchronous formation of the two very different types of star-forming galaxy within the same structure at high redshift. These results are in general agreement with our understanding of the formation of cosmic structure.Comment: Published in Nature (7th May 2009 issue). The astro-ph paper includes the main text (10 pages, 2 figures, 1 table) and supplementary material (6 pages, 4 figures, 1 table

    Gastric organoids: Progress and remaining challenges

    Get PDF
    The stomach is a complex and physiologically necessary organ, yet large differences in physiology between mouse and human stomachs have impeded translation of physiological discoveries and drug screens performed using murine gastric tissues. Gastric cancer (GC) is a global health threat, with a high mortality rate and limited treatment options. The heterogeneous nature of GC makes it poorly suited for current one size fits all standard treatments. In this review, we discuss the rapidly evolving field of gastric organoids, with a focus on studies expanding cultures from primary human tissues and describing the benefits of mouse organoid models. We introduce the differing methods for culturing healthy gastric tissue from adult tissues or pluripotent stem cells, discuss the promise these systems have for preclinical drug screens, and highlight applications of organoids for precision medicine. Finally, we discuss the limitations of these models and look to the future to present potential ways gastric organoids will advance treatment options for patients with GC

    On the Clustering of Sub-millimeter Galaxies

    Get PDF
    We measure the angular two-point correlation function of sub-millimeter galaxies (SMGs) from 1.1-millimeter imaging of the COSMOS field with the AzTEC camera and ASTE 10-meter telescope. These data yields one of the largest contiguous samples of SMGs to date, covering an area of 0.72 degrees^2 down to a 1.26 mJy/beam (1-sigma) limit, including 189 (328) sources with S/N greater than 3.5 (3). We can only set upper limits to the correlation length r_0, modeling the correlation function as a power-law with pre-assigned slope. Assuming existing redshift distributions, we derive 68.3% confidence level upper limits of r_0 < 6-8 h^-1 Mpc at 3.7 mJy, and r_0 < 11-12 h^-1 Mpc at 4.2 mJy. Although consistent with most previous estimates, these upper limits imply that the real r_0 is likely smaller. This casts doubts on the robustness of claims that SMGs are characterized by significantly stronger spatial clustering, (and thus larger mass), than differently selected galaxies at high-redshift. Using Monte Carlo simulations we show that even strongly clustered distributions of galaxies can appear unclustered when sampled with limited sensitivity and coarse angular resolution common to current sub-millimeter surveys. The simulations, however, also show that unclustered distributions can appear strongly clustered under these circumstances. From the simulations, we predict that at our survey depth, a mapped area of two degrees^2 is needed to reconstruct the correlation function, assuming smaller beam sizes of future surveys (e.g. the Large Millimeter Telescope's 6" beam size). At present, robust measures of the clustering strength of bright SMGs appear to be below the reach of most observations.Comment: 23 pages, 8 figures, accepted for publication in The Astrophysical Journa

    Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: The long life family study

    Get PDF
    Leukocyte telomere length is believed to measure cellular aging in humans, and short leukocyte telomere length is associated with increased risks of late onset diseases, including cardiovascular disease, dementia, etc. Many studies have shown that leukocyte telomere length is a heritable trait, and several candidate genes have been identified, including TERT, TERC, OBFC1, and CTC1. Unlike most studies that have focused on genetic causes of chronic diseases such as heart disease and diabetes in relation to leukocyte telomere length, the present study examined the genome to identify variants that may contribute to variation in leukocyte telomere length among families with exceptional longevity. From the genome wide association analysis in 4,289 LLFS participants, we identified a novel intergenic SNP rs7680468 located near PAPSS1 and DKK2 on 4q25 (p = 4.7E-8). From our linkage analysis, we identified two additional novel loci with HLOD scores exceeding three, including 4.77 for 17q23.2, and 4.36 for 10q11.21. These two loci harbor a number of novel candidate genes with SNPs, and our gene-wise association analysis identified multiple genes, including DCAF7, POLG2, CEP95, and SMURF2 at 17q23.2; and RASGEF1A, HNRNPF, ANF487, CSTF2T, and PRKG1 at 10q11.21. Among these genes, multiple SNPs were associated with leukocyte telomere length, but the strongest association was observed with one contiguous haplotype in CEP95 and SMURF2. We also show that three previously reported genes—TERC, MYNN, and OBFC1—were significantly associated with leukocyte telomere length at p(empirical) < 0.05

    \u3ci\u3eS\u3c/i\u3epitzer IRAC Infrared Colours of Submillimetre-Bright Galaxies

    Get PDF
    High-redshift submillimetre-bright galaxies identified by blank field surveys at millimetre and submillimetre wavelengths appear in the region of the Infra Red Array Camera (IRAC) colour-colour diagrams previously identified as the domain of luminous active galactic nuclei (AGNs). Our analysis using a set of empirical and theoretical dusty starburst spectral energy distribution (SED) models shows that power-law continuum sources associated with hot dust heated by young (≲100 Myr old), extreme starbursts at z \u3e 2 also occupy the same general area as AGNs in the IRAC colour-colour plots. A detailed comparison of the IRAC colours and SEDs demonstrates that the two populations are distinct from each other, with submillimetre-bright galaxies having a systematically flatter IRAC spectrum (≳1 mag bluer in the observed [4.5]-[8.0] colour). Only about 20 per cent of the objects overlap in the colour-colour plots, and this low fraction suggests that submillimetre galaxies powered by a dust-obscured AGN are not common. The red infrared colours of the submillimetre galaxies are distinct from those of the ubiquitous foreground IRAC sources, and we propose a set of infrared colour selection criteria for identifying SMG counterparts that can be used even in the absence of radio or Multiband Imaging Photometer for Spitzer (MIPS) 24 μm data

    Mapping interactions with the chaperone network reveals factors that protect against tau aggregation.

    Get PDF
    A network of molecular chaperones is known to bind proteins ('clients') and balance their folding, function and turnover. However, it is often unclear which chaperones are critical for selective recognition of individual clients. It is also not clear why these key chaperones might fail in protein-aggregation diseases. Here, we utilized human microtubule-associated protein tau (MAPT or tau) as a model client to survey interactions between ~30 purified chaperones and ~20 disease-associated tau variants (~600 combinations). From this large-scale analysis, we identified human DnaJA2 as an unexpected, but potent, inhibitor of tau aggregation. DnaJA2 levels were correlated with tau pathology in human brains, supporting the idea that it is an important regulator of tau homeostasis. Of note, we found that some disease-associated tau variants were relatively immune to interactions with chaperones, suggesting a model in which avoiding physical recognition by chaperone networks may contribute to disease
    corecore