
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Astronomy Department Faculty Publication Series Astronomy

2009

Spatial correlation between submillimetre and
Lyman-alpha galaxies in the SSA 22 protocluster
Y Tamura

K Kohno

K Nakanishi

B Hatsukade

D Iono

See next page for additional authors

Follow this and additional works at: https://scholarworks.umass.edu/astro_faculty_pubs

Part of the Astrophysics and Astronomy Commons

This Article is brought to you for free and open access by the Astronomy at ScholarWorks@UMass Amherst. It has been accepted for inclusion in
Astronomy Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please
contact scholarworks@library.umass.edu.

Recommended Citation
Tamura, Y; Kohno, K; Nakanishi, K; Hatsukade, B; Iono, D; Wilson, GW; Yun, Min; Takata, T; Matsuda, Y; Tosaki, T; Ezawa, H;
Perera, TA; Scott, KS; Austermann, JE; Hughes, DH; Aretxaga, I; Chung, A; Oshima, T; Yamaguchi, N; Tanaka, K; and Kawabe, R,
"Spatial correlation between submillimetre and Lyman-alpha galaxies in the SSA 22 protocluster" (2009). NATURE. 819.
10.1038/nature07947

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UMass Amherst

https://core.ac.uk/display/13619532?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fastro_faculty_pubs%2F819&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/astro_faculty_pubs?utm_source=scholarworks.umass.edu%2Fastro_faculty_pubs%2F819&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/astro?utm_source=scholarworks.umass.edu%2Fastro_faculty_pubs%2F819&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/astro_faculty_pubs?utm_source=scholarworks.umass.edu%2Fastro_faculty_pubs%2F819&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/123?utm_source=scholarworks.umass.edu%2Fastro_faculty_pubs%2F819&utm_medium=PDF&utm_campaign=PDFCoverPages
10.1038/nature07947
mailto:scholarworks@library.umass.edu


Authors
Y Tamura, K Kohno, K Nakanishi, B Hatsukade, D Iono, GW Wilson, Min Yun, T Takata, Y Matsuda, T
Tosaki, H Ezawa, TA Perera, KS Scott, JE Austermann, DH Hughes, I Aretxaga, A Chung, T Oshima, N
Yamaguchi, K Tanaka, and R Kawabe

This article is available at ScholarWorks@UMass Amherst: https://scholarworks.umass.edu/astro_faculty_pubs/819

https://scholarworks.umass.edu/astro_faculty_pubs/819?utm_source=scholarworks.umass.edu%2Fastro_faculty_pubs%2F819&utm_medium=PDF&utm_campaign=PDFCoverPages


1 

Spatial correlation between submillimetre and Lyman-α  

galaxies in the SSA 22 protocluster 

Yoichi Tamura1,2, Kotaro Kohno3, Kouichiro Nakanishi2,4, Bunyo Hatsukade3, Daisuke Iono3,4, Grant W. 

Wilson5, Min S. Yun5, Tadafumi Takata2, Yuichi Matsuda2, Tomoka Tosaki4, Hajime Ezawa4, Thushara 

A. Perera5, Kimberly S. Scott5, Jason E. Austermann5, David H. Hughes6, Itziar Aretxaga6, Aeree Chung5, 

Tai Oshima4, Nobuyuki Yamaguchi4, Kunihiko Tanaka4 & Ryohei Kawabe4 

1Department of Astronomy, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. 2National 

Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan. 3Institute of 

Astronomy, University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015, Japan. 4Nobeyama Radio 

Observatory, National Astronomical Observatory of Japan, Minamimaki, Minamisaku, Nagano 384-1305, 
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Lyman-α  emitters are thought to be young, low-mass galaxies with ages of ~108 yr 

(refs 1, 2). An overdensity of them in one region of the sky (the SSA 22 field) traces 

out a filamentary structure in the early Universe at a redshift of z ≈  3.1 (equivalent 

to 15 per cent of the age of the Universe) and is believed to mark a forming 

protocluster3,4. Galaxies that are bright at (sub)millimetre wavelengths are 

undergoing violent episodes of star formation5–8, and there is evidence that they 

are preferentially associated with high-redshift radio galaxies9, so the question of 

whether they are also associated with the most significant large-scale structure 

growing at high redshift (as outlined by Lyman-α  emitters) naturally arises. Here 

we report an imaging survey of 1,100-µm emission in the SSA 22 region. We find 

an enhancement of submillimetre galaxies near the core of the protocluster, and a 

large-scale correlation between the submillimetre galaxies and the low-mass 

Lyman-α  emitters, suggesting synchronous formation of the two very different 

types of star-forming galaxy within the same structure at high redshift. These 

results are in general agreement with our understanding of the formation of 

cosmic structure. 

Many different populations of young star-forming galaxies in the early Universe 

are known, but the relations among them and to the cosmic large-scale structure are still 

not well understood. The members of one of these populations are characterized by their 
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strong Lyman-α (Lyα) emission (luminosity, LLyα  1042 erg s−1), arising from ionized 

gas; their deficiency in ultraviolet continuum emission, which is interpreted as having a 

relatively small stellar component1 (Mstar  109M


, where M


 is the solar mass); and 

their small size2 (  1 kpc in diameter). The Lyα emitters towards SSA 22 trace a large-

scale (∼10 arcmin) filamentary structure that extends over several tens of megaparsecs 

(co-moving scale) and which may be the largest protocluster yet detected at high 

redshift4.  

Massive galaxies forming through accretion and mergers of small galaxies in 

such high-density environments are expected to be dust-obscured starbursts, which are 

too faint to detect at optical wavelengths but are observed as submillimetre-bright 

galaxies (SMGs). It is known from previous studies that SMGs have molecular gas 

reservoirs of 1010M


–1011M


 (ref. 10) for their star-formation activities, suggesting that 

they are progenitors of massive elliptical galaxies seen in the cores of present-day 

clusters8,11. Individual ∼5-arcmin2-wide, deep submillimetre surveys in the direction of 

powerful, high-redshift radio galaxies, which are also believed to trace protoclusters12, 

have presented tentative evidence for an enhancement in the number density of 

submillimetre sources around them9. Although these observations were limited in 

sensitivity and spatial coverage, they support the idea that SMGs are related to large-

scale structure. To better understand the connection between the formation of massive 

galaxies and large-scale structure, we mapped the large-scale distribution of 

(sub)millimetre-bright, dusty starburst galaxies in the SSA 22 protocluster. 

We carried out a wide-area (390-arcmin2) survey of the SSA 22 field at 

1,100 µm using the AzTEC camera13 mounted on the Atacama Submillimeter Telescope 

Experiment (ASTE)14, Chile (see also Supplementary Fig. 1). Our AzTEC map (Fig. 1a), 

which is more than 20 times larger than any of the existing maps at submillimetre 

wavelengths in this field (see, for example, refs 15–17), is wide enough to cover the 

region of the entire protocluster. We have detected 30 SMGs with signal-to-noise ratios 

s/n ≥ 3.5 (a full source list is given in Supplementary Table 1). Their intrinsic flux 

densities are in the range 1.9–8.4 mJy (1 Jy = 10−23 erg s−1 cm−2 Hz−1), corresponding to 

far-infrared luminosities of LFIR > 4 × 1012L


 (where L


 is the solar luminosity) if we 

assume an emissivity index of β = 1.5, a dust temperature of Tdust = 40 K and that the 
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sources are located at z = 2–6. The inferred star-formation rates of the 1,100-µm sources 

are ~103M


 yr−1, assuming that star formation is the dominant mechanism that heats the 

dust. 

The most prominent new finding is that the distribution of the brighter 

(≥2.7 mJy) half of the 1,100-µm sources (15 of the 30, hereafter termed ‘bright’ SMGs; 

Table 1), which suffer little from incompleteness and false detections (Supplementary 

Figs 2 and 3), appears to be correlated with the high-density region of Lyα emitters4, as 

seen in Fig. 1b. A concentration of bright SMGs ∼5 arcmin northwest of the field centre 

is evident. Seven of the 15 bright SMGs (47%) are concentrated within a 50-arcmin2 

region in the direction that has a large-scale filamentary structure of Lyα emitters 

∼50 Mpc in depth (see fig. 1 of ref. 18). The number density over this region is 2–3 

times higher than those found in blank-field surveys at 1,100 µm (ref. 19). Furthermore, 

the three most significant sources ( , ,  mJy) are all located close 

(<4.5 arcmin) to the peak of the Lyα emitter overdensity. Photometric redshift estimates 

for the SMGs based on their radio and 24–1,100-µm flux ratios (Supplementary Fig. 4) 

indicate that they are probably at high redshift (z > 1). The redshift estimates also 

suggest that some fraction of the bright SMGs, including the three most significant 

sources towards SSA 22, can be located at z = 3.1 and may mark the local peak of the 

underlying mass distribution in the protocluster. 

A two-point angular cross-correlation function is often used in determining the 

fractional increase in the probability of finding a source of one population within a unit 

solid angle as a function of angular distance from a source of another population, 

relative to a random distribution. We use an angular cross-correlation function to 

quantify the degree of cohabitation between the Lyα emitters and the bright SMGs. 

Figure 2 shows the cross-correlation function, which reveals strong correlation signals 

at angular distances less than 5 arcmin for the bright sample, suggesting close 

association of the Lyα emitters with the bright SMGs that are most likely embedded in 

the more massive dark haloes. Monte Carlo simulations (Supplementary Information) 

also show a correspondence between the two distributions, at a 97.3% significance level, 

further supporting the positional association of Lyα emitters with bright SMGs. 



4 

The gravitational lensing magnification of background galaxies by foreground 

large-scale structure would immediately preclude the physical connection between the 

galaxies and the foreground structure. Some authors20,21 have reported correlations 

between bright (sub)millimetre sources and optically selected low-redshift galaxies 

(mostly at z < 1) in other regions of the sky. In general, SMGs are often found at high 

redshift (median, z = 2.2; ref. 22), and the maximal gravitational lensing magnification 

for a background galaxy at z  2 occurs when the foreground lensing structure is at 

z ≈ 0.5. Therefore, they concluded that the correlation signal is most likely the result of 

amplification of background SMGs due to gravitational weak lensing by the foreground 

low-redshift galaxies. By contrast, the origin of the correlation signals in SSA 22 is 

most likely intrinsic to the large-scale structure in which both populations, SMGs and 

Lyα emitters, are embedded. Because the redshift estimates for the SMGs place them at 

distances coeval with the Lyα emitters, it is unlikely that the correlation seen in SSA 22 

is due to amplification of a much higher-redshift (z  3.1) SMG population lensed by 

the structure traced by the Lyα emitters, which are all located at z = 3.1 (not z ≈ 0.5). 

We do not detect the dust emission from individual Lyα emitters at the 

sensitivity of our 1,100-µm observations. This is a strong indication that SMGs and Lyα 

emitters are different populations, even though the Lyα emitters are spatially correlated 

with the SMGs. Of the 166 Lyα emitters within our 1,100-µm coverage, none are 

within the 2σ error circle (∼26-arcsec diameter for 3.5 < s/n < 4.5 and  20 arcsec for 

s/n > 4.5) of an SMG; on average, we expect 2–3 SMGs to have a chance to be 

associated with a Lyα emitter in AzTEC’s 28-arcsec beam if 30 SMGs and 166 Lyα 

emitters are randomly scattered in the 390-arcmin2 region of our survey. To estimate the 

dust mass of a typical Lyα emitter in SSA 22, we stack the 1,100-µm images on the 

positions of the 166 Lyα emitters. We see no dust emission above 107 µJy (2σ) at 

1,100 µm, and derive limits on far-infrared luminosity of LFIR < 1.9 × 1011L


 and 

LFIR < 1.7 × 1012L


 for β = 1.5 and, respectively, Tdust = 40 K and Tdust = 70 K. These 

luminosities correspond to respective dust masses of Mdust < 1.4 × 107M


 and 

Mdust < 5.8 × 106M


, assuming a dust emissivity of κ850 µm = 0.15 m2 kg−1 (ref. 23). This 

limit is 3–40 times lower than the dust masses previously derived24,25 for Lyα emitters 

at z = 6.5. Of course, the result from a simple stacking analysis cannot strongly 
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constrain the dust properties of the Lyα emitter population. Nevertheless, this limit is 1–

2 orders of magnitude lower than the average dust mass found in the population of 

SMGs, supporting the argument that Lyα emitters are on average less dust obscured1 

than SMGs. 

These results provide evidence in favour of the synchronous formation of two 

very different types of high-redshift star-forming galaxy, SMGs and Lyα emitters, 

within the same cosmic structure. Although the formation process of SMGs is not yet 

fully understood, the observational evidence shown here suggests that they may form 

preferentially in regions of high mass concentration, which is consistent with 

predictions from the standard model of hierarchical structure formation26,27: we are 

presumably observing a galaxy-formation site where large-scale accumulation of 

baryonic matter is occurring within the large dark matter halo. Millimetre/submillimetre 

interferometric identifications followed by accurate measurements of the SMG redshifts 

will allow us to investigate this further. 

Received 23 August 2008; accepted 3 March 2009; doi:10.1038/nature07947. 
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Table 1 The bright SMG sample found in SSA 22 
Coordinate (J2000) Flux density (mJy) Source name RA (h:min:s) Dec.  Sobserved* Sdeboost† s/n 

SSA22-AzTEC1 22:17:32.42 +0° 17′ 35.5′′  8.7 ± 0.7  12.8 

SSA22-AzTEC2 22:17:42.38 +0° 16′ 59.3′′  4.9 ± 0.7  7.2 

SSA22-AzTEC3 22:17:18.85 +0° 18′ 0.0′′  4.7 ± 0.7  6.8 

SSA22-AzTEC4 22:18:14.37 +0° 9′ 53.1′′  5.6 ± 0.9  6.2 

SSA22-AzTEC5 22:17:10.77 +0° 14′ 11.8′′  4.0 ± 0.7  5.6 

SSA22-AzTEC6 22:17:20.07 +0° 20′ 11.0′′  4.0 ± 0.7  5.6 

SSA22-AzTEC7 22:17:40.82 +0° 12′ 47.6′′  3.6 ± 0.7  5.2 

SSA22-AzTEC8 22:18:5.65 +0° 6′ 42.0′′  4.9 ± 1.0  5.0 

SSA22-AzTEC9 22:17:54.40 +0° 19′ 29.5′′  3.6 ± 0.7  5.0 

SSA22-AzTEC10 22:17:34.03 +0° 13′ 46.8′′  3.4 ± 0.7  4.8 

SSA22-AzTEC11 22:17:29.64 +0° 20′ 24.4′′  3.3 ± 0.7  4.7 

SSA22-AzTEC12 22:17:36.04 +0° 4′ 0.2′′  4.0 ± 0.9  4.5 

SSA22-AzTEC13 22:18:5.95 +0° 11′ 41.9′′  3.3 ± 0.7  4.5 

SSA22-AzTEC14 22:17:0.34 +0° 10′ 42.6′′  3.7 ± 0.9  4.2 

SSA22-AzTEC15 22:16:57.60 +0° 19′ 22.8′′  4.1 ± 1.0  4.2 
A full list of the 30 submillimetre galaxies is given in Supplementary Table 1. Note that the 
astrometric accuracy of the catalogue is ≈10 arcsec. 
*Observed flux density before flux bias correction, plus the 1σ error. 
†Deboosted flux density (flux density corrected for the flux bias due to confusion noise using the 
method described elsewhere28), plus the 68% confidence interval.  
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Figure 1 The positions of 1,100-µm sources and Lyα  emitters towards the SSA 22 

protocluster region. a, The colour scale shows the map of signal-to-noise ratio at 

1,100 µm. The map shows 30 sources with signal-to-noise ratios ≥3.5 (circles). 

Observations of SSA 22 (field centre at RA = 22 h 17 min 36 s, dec. = +0° 15′ 00′′ 

(J2000)) were obtained using the AzTEC camera13, operating at 1,100 µm, mounted on 

the ASTE 10-m submillimetre telescope14 during the July–September 2007 observing 

season. The data consist of a total of 42 h of integration time on source under excellent 

conditions (zenith atmospheric opacity at 220 GHz, τ220 GHz = 0.01–0.10). This resulted 
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in a root-mean-square noise level of 0.68–0.99 mJy per beam over 390 arcmin2. The 

point spread function of AzTEC on ASTE has a full-width at half-maximum of 

28 ± 1 arcsec. b, The locations of the bright submillimetre galaxies with 

S1,100 µm ≥ 2.7 mJy (orange filled circles) and the Lyα emitters at z = 3.1 (white dots). 

The sizes of the orange circles are proportional to their 1,100 µm fluxes. The number 

density field of the Lyα emitters is shown in the colour scale, highlighting the density 

enhancement of the Lyα emitters, which is thought to trace out the underlying large-

scale structure at z = 3.1. 

CCF (bright SMG-LAE)

ACF (LAE-LAE)

Angular distance (arcmin)

A
n
g
u
la

r 
c
ro

s
s
-c

o
rr

e
la

ti
o
n
 f
u
n
c
ti
o
n

 16 14 12 10 8 6 4 2 0

 1

 0.8

 0.6

 0.4

 0.2

 0

-0.2

 

Figure 2 Angular cross-correlation between submillimetre galaxies and Lyα  

emitters. The two-point angular cross-correlation function shown here is computed for 

the 166 Lyα emitters and the 15 brightest (S1,100 µm ≥ 2.7 mJy) submillimetre galaxies 

(orange circles). For reference, we also show the two-point angular autocorrelation 

function for the SSA 22 Ly-α emitters (blue squares). Small-number statistics prevent 

us from constraining the auto-correlation function well for the submillimetre galaxies. 

The correlation functions are computed using the estimator of ref. 29. The error bars are 

estimated from the root mean square of 1,000 bootstrap samples. See Supplementary 

Information for details. 

 



 

 

Supplementary Information 

1. Calibration and analyses of the data obtained with AzTEC/ASTE.  

Telescope pointing was checked every two hours using a nearby radio-loud quasar 3C446, resulting in a 

pointing accuracy better than 3 arcsec (ref. 30). Uranus and Neptune were observed two or three times per 

night for flux calibration, beam shape measurements, and array flat fielding. The point spread function of 

the AzTEC instrument on ASTE has a full-width at half-maximum of 28 ± 1 arcsec. Since emission from 

the atmosphere largely dominates the detector output, we removed the atmospheric noise fluctuations 

based on a principal component analysis technique (PCA cleaning)19,29. The response function of the PCA 

cleaning process to a point source is simulated, and then used for optimal filtering of the signal map for 

point-source detection in image processing. This resulted in an r.m.s. noise level of 0.68–0.99 mJy/beam 

over 390 arcmin2. The fluxes of the detected sources were ‘de-boosted’ to correct for flux bias using the 

recipe described elsewhere29,31. Completeness in the survey was also computed by simulating the 

detection rate of 1,000 fake point sources per flux bin placed in the real cleaned signal map one by one. 

The completeness was found to be 50% at 2.7 mJy and 90% at 4.0 mJy (Supplementary Fig. 2S).  

2. Angular cross-/auto-correlation functions. 

The angular cross-correlation function (CCF) and auto-correlation function (ACF) shown in Fig. 2 are 

computed using the Landy & Szalay estimator28. For calculating the correlation functions, 25 sky 

realizations with 1,000 random sources are used. The error bars on the correlation functions are estimated 

from the r.m.s. among 1,000 bootstrap samples of the original catalogues. Integral constraint is taken into 

account for correcting the suppression of the amplitude of the correlation functions caused by poor 

sampling of large angular scales. Bins of 1.5 arcmin are used, but separations θ < 15 arcsec are excluded 

to avoid the source confusion effect.  

3. Significance level of the angular correlation between distributions of the SMGs and Lyα 

emitters. 

We applied Monte Carlo simulations using the bi-dimensional Kolmogorov-Smirnov D-statistic32 to 

assess the significance level of the apparent angular correlation between the distributions of the 15 bright 

SMGs and the 166 Lyα emitters. The D-statistic is used here to quantify the difference between the two 

distributions. We performed 10,000 trials of calculating the D-statistic for 15 random sources and the Lyα 

emitters, and compared these simulated D-statistics with that measured between the 15 bright SMGs and 

Lyα emitters (Dobs = 0.222). We found that 273 trials out of 10,000 have simulated D-statistics smaller 

than the observed D-statistic. This suggests that only 2.7% of the random distributions are better 

correlated to the Lyα emitter distribution than the real 15 SMGs (i.e., the significance level of the 

apparent correlation is 97.3% or 2.2σ).  



 

 

4. Photometric redshift estimates.  

There are 12 SMGs with 20 cm (Very Large Array) radio data available and 13 SMGs with 24 µm 

(Spitzer Space Telescope/MIPS) data available, and 5 SMGs of them have a counterpart both at 20 cm 

and 24µm. Positional uncertainties of the SMGs (error circles) are derived through Monte Carlo 

simulation to confine positions where the possible multi-wavelength counterpart(s) are likely located. We 

select a possible counterpart within the 2σ error circle of the AzTEC centroids (≈ 26˝ diameter for 3.5 < 

S/N < 4.5 and  20˝ for S/N > 4.5) and determine the 20-cm and 24-µm fluxes (S20cm and S24µm) of the 

SMGs. We also give 2σ upper limits on S20cm and/or S24µm if no candidates are found. One should note 

that the fluxes at 20 cm and 24 µm are not always measured for the identical counterpart candidate 

because the 20-cm and 24-µm coverages are not well overlapped. This is why the redshifts shown in 

Supplementary Figs 4a and b are somewhat inconsistent. The fluxes at 20 cm and 24 µm dim rapidly as 

redshift increases while 1,100 µm fluxes are almost constant as a function of redshift6 due to the 

difference in the local slopes of the spectral energy distribution (SED). For examining the redshift 

dependence of the fluxes, we used SEDs33 modelled for 30 nearby (ultra-)luminous infrared galaxies (LFIR 

= 1011.2 – 1012.5 LSun).  
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Supplementary Figures 

 

 

 

Figure S1 | Schematic picture of this work. The filamentary structure in green shown in the top-left 
corner represents the proto-cluster outlined by Lyman-α emitting galaxies in the SSA 22 field. We found 
an apparent clustering of submillimetre galaxies, which are believed to be massive dusty starburst 
galaxies (orange dots; an artist’s conception of a submillimetre galaxy is shown in the bottom-left corner), 
towards the proto-cluster using the AzTEC camera mounted on the ASTE telescope (shown in the 
bottom-right corner).  Although the 1,100-µm map shows only the projected distribution of the 
submillimetre galaxies on the plane of the sky, it is likely that some fraction of our submillimetre galaxies 
actually belongs to the proto-cluster, marking the local peak of underlying mass distribution.  
 



 

 

 

Figure S2 | Completeness function. The plots show the differential completeness derived through 
Monte Carlo simulations. The error bars on each plot are estimated from the binomial distribution. The 
solid curve is the best-fit curve given by (1/2) erf [ (S – a) / b ], where S is flux density measured in units 
of mJy, erf [ ] is the error function, a = 2.67 mJy, and b = 1.41 mJy. 
 

 

Figure S3 | The number of false detections over the 390 arcmin2 map. The plots show the 
cumulative number of false detections above given flux density thresholds Sobserved expected over the 
1,100-µm map shown in Fig. 1. The numbers are estimated by extracting spurious sources from 100 
simulated pure noise maps with the ordinary extracting algorithm. The details for simulation technique 
are described elsewhere29. The error bars are the 1σ Poisson uncertainties. The observed (before de-
boosting) flux densities of the bright SMGs are 3.3 mJy or brighter (see Supplementary Table S1), and so 
it is likely that less than one fake source contaminates the bright sample (vertical dotted line and arrow). 
 



 

 

 

Figure S4 | Photometric redshift estimates of the submillimetre galaxies towards SSA 22. 
Horizontal lines show the flux ratios, (a) S20cm/S1,100µm and (b) S24µm/S1,100µm, for each SMG. The 20 cm 
and 24 µm fluxes are obtained from the counterpart candidates within the 2σ error circle of the AzTEC 
centroids (≈ 26˝ diameter for 3.5 < S/N < 4.5 and  20˝ for S/N > 4.5) (solid lines), or from 2σ upper limits 
if no candidates are found (dashed lines). Solid curves in grey indicate the redshift dependence of the flux 
ratios predicted from spectral energy distributions32 fit to 30 nearby infrared luminous star-forming 
galaxies. It is likely that some fraction of the SMGs are at z = 3.1 although there remain uncertainties in 
redshift space due to the scatter of the flux ratios predicted from the various templates of the spectral 
energy distribution.  



 

 

Supplementary Table 

 

Table S1 | Source positions and flux densities. 
Source name Coordinate (J2000) Flux density (mJy) S/N 

 R.A. Decl. Sobse rve d* Sde boost†  

SSA22-AzTEC1 22:17:32.42 +0:17:35.5 8.7 ± 0.7 8.4+0 .8
- 1 .0 12.8 

SSA22-AzTEC2 22:17:42.38 +0:16:59.3 4.9 ± 0.7 4.4+0 .9
- 0 .8 7.2 

SSA22-AzTEC3 22:17:18.85 +0:18:0.0 4.7 ± 0.7 4.1+1 .0
- 0 .8 6.8 

SSA22-AzTEC4 22:18:14.37 +0:9:53.1 5.6 ± 0.9 4.7+1 .2
- 1 .0 6.2 

SSA22-AzTEC5 22:17:10.77 +0:14:11.8 4.0 ± 0.7 3.3+1 .0
- 0 .8 5.6 

SSA22-AzTEC6 22:17:20.07 +0:20:11.0 4.0 ± 0.7 3.3+1 .0
- 0 .8 5.6 

SSA22-AzTEC7 22:17:40.82 +0:12:47.6 3.6 ± 0.7 3.1+0 .8
- 0 .9 5.2 

SSA22-AzTEC8 22:18:5.65 +0:6:42.0 4.9 ± 1.0 3.9+1 .2
- 1 .2 5.0 

SSA22-AzTEC9 22:17:54.40 +0:19:29.5 3.6 ± 0.7 2.9+0 .9
- 0 .9 5.0 

SSA22-AzTEC10 22:17:34.03 +0:13:46.8 3.4 ± 0.7 2.8+0 .9
- 0 .9 4.8 

SSA22-AzTEC11 22:17:29.64 +0:20:24.4 3.3 ± 0.7 2.7+0 .9
- 0 .9 4.7 

SSA22-AzTEC12 22:17:36.04 +0:4:0.2 4.0 ± 0.9 3.1+1 .1
- 1 .1 4.5 

SSA22-AzTEC13 22:18:5.95 +0:11:41.9 3.3 ± 0.7 2.7+0 .9
- 1 .0 4.5 

SSA22-AzTEC14 22:17:0.34 +0:10:42.6 3.7 ± 0.9 2.7+1 .2
- 1 .2 4.2 

SSA22-AzTEC15 22:16:57.60 +0:19:22.8 4.1 ± 1.0 2.9+1 .4
- 1 .3 4.2 

SSA22-AzTEC16 22:17:21.98 +0:9:30.5 2.8 ± 0.7 2.1+1 .0
- 0 .9 4.0 

SSA22-AzTEC17 22:17:47.17 +0:8:18.5 2.8 ± 0.7 2.1+1 .0
- 1 .0 4.0 

SSA22-AzTEC18 22:17:49.56 +0:15:18.0 2.6 ± 0.7 2.0+0 .9
- 1 .0 3.9 

SSA22-AzTEC19 22:17:44.04 +0:8:29.8 2.7 ± 0.7 2.0+1 .0
- 1 .0 3.9 

SSA22-AzTEC20 22:17:36.76 +0:18:16.0 2.6 ± 0.7 1.9+1 .0
- 1 .0 3.8 

SSA22-AzTEC21 22:18:9.99 +0:16:49.0 2.9 ± 0.8 2.1+1 .2
- 1 .2 3.8 

SSA22-AzTEC22 22:17:3.20 +0:17:18.5 3.0 ± 0.8 2.1+1 .2
- 1 .2 3.8 

SSA22-AzTEC23 22:17:18.83 +0:22:36.9 3.1 ± 0.8 2.2+1 .3
- 1 .3 3.8 

SSA22-AzTEC24 22:18:14.44 +0:20:1.0 3.7 ± 1.0 2.4+1 .8
- 1 .9 3.7 

SSA22-AzTEC25 22:16:59.19 +0:12:42.0 3.1 ± 0.8 2.1+1 .4
- 1 .3 3.7 

SSA22-AzTEC26 22:17:12.49 +0:6:5.1 3.5 ± 0.9 2.3+1 .7
- 1 .7 3.7 

SSA22-AzTEC27 22:16:58.79 +0:13:48.1 3.0 ± 0.8 2.1+1 .3
- 1 .4 3.7 

SSA22-AzTEC28 22:17:46.37 +0:22:30.6 2.8 ± 0.8 2.0+1 .2
- 1 .3 3.7 

SSA22-AzTEC29 22:17:13.65 +0:22:12.6 3.2 ± 0.9 2.1+1 .5
- 1 .4 3.7 

SSA22-AzTEC30 22:17:28.07 +0:3:35.5 3.5 ± 1.0 2.3+1 .7
- 1 .9 3.6 

We define AzTEC1-15 as the `bright’ SMG sample with de-boosted flux densities equal to or greater than 2.7 mJy; whereas the 
remainder is the f̀aint’ SMG sample. Note that the astrometric accuracy of the catalogue is ≈10 arcsec. 
* Observed flux density before flux bias correction and the 1σ error.  
† De-boosted flux density (corrected for the flux bias) and the 68% confidence interval.  

 


	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2009

	Spatial correlation between submillimetre and Lyman-alpha galaxies in the SSA 22 protocluster
	Y Tamura
	K Kohno
	K Nakanishi
	B Hatsukade
	D Iono
	See next page for additional authors
	Recommended Citation
	Authors


	si-yt-v5

